【題目】已知函數(shù) (a∈R)
(1)討論f(x)在(0,+∞)上的單調(diào)性;
(2)若對(duì)任意的正整數(shù)[﹣1,1)都有 成立,求a的取值范圍.

【答案】
(1)解:f′(x)= ,

當(dāng)a 時(shí),f′(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上單調(diào)遞增;

當(dāng)- <a<0時(shí),f(x)在(0, )上單調(diào)遞減,在( ,+∞)上單調(diào)遞增;

當(dāng)a≥0時(shí),f′(x)<0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上單調(diào)遞減.


(2)解: >0.

令g(x)=(1﹣ax)ln(1+x)﹣x,x∈(0,1],故要上式成立,只需對(duì)x∈(0,1],有g(shù)(x)>0.

g′(x)=f(x)=﹣aln(x+1)+ ﹣a﹣1.

由(1)可知,

①當(dāng) 時(shí),g(x)在(0,1]上單調(diào)遞增,g(x)>g(0)=0,符合題意;

②當(dāng)a≥0,g(x)在(0,1]上單調(diào)遞減,g(x)<g(0)=0,不符合題意;

③當(dāng)- <a 時(shí),g(x)在(0, )上單調(diào)遞減,∴當(dāng)x∈(0,﹣ )時(shí),g(x)<g(0),不符合題意;

④當(dāng) <a<0時(shí),g(x)在(0,1]上單調(diào)遞減,∴當(dāng)x∈(0,1]時(shí),g(x)<g(0)=0,不符合題意.

綜上可知,a的取值范圍為(﹣∞,﹣ ]


【解析】(1)求出原函數(shù)的導(dǎo)函數(shù),然后對(duì)a分類求得導(dǎo)函數(shù)的符號(hào),從而得到原函數(shù)的單調(diào)性;(2)把 ,轉(zhuǎn)化為 >0.令g(x)=(1﹣ax)ln(1+x)﹣x,x∈(0,1],故要上式成立,只需對(duì)x∈(0,1],有g(shù)(x)>0. g′(x)=f(x)=﹣aln(x+1)+ ﹣a﹣1.結(jié)合(1)中函數(shù)的單調(diào)性分類求解得答案.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為 (t為參數(shù),a>0)以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為
(Ⅰ)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)a=2時(shí),求點(diǎn)P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點(diǎn)均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,曲線C1的方程為 (θ為參數(shù)),曲線C2的極坐標(biāo)方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點(diǎn).
(1)求|AB|的值;
(2)求點(diǎn)M(﹣1,2)到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購(gòu)銷平臺(tái).已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出1噸該商品可獲利潤(rùn)0.5萬(wàn)元,未售出的商品,每1噸虧損0.3萬(wàn)元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如右圖所示.已知電商為下一個(gè)銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個(gè)銷售季度的市場(chǎng)需求量,T(單位:萬(wàn)元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤(rùn). (Ⅰ)視x分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求P(x≥120)
(Ⅱ)將T表示為x的函數(shù),求出該函數(shù)表達(dá)式;
(Ⅲ)在頻率分布直方圖的市場(chǎng)需求量分組中,以各組的區(qū)間中點(diǎn)值(組中值)代表該組的各個(gè)值,并以市場(chǎng)需求量落入該區(qū)間的頻率作為市場(chǎng)需求量取該組中值的概率(例如x∈[100,110),則取x=105,且x=105的概率等于市場(chǎng)需求量落入100,110)的頻率),求T的分布列及數(shù)學(xué)期望E(T).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為 . (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線 的一條切線l與y=x,y軸三條直線圍成三角形記為△OAB,則△OAB外接圓面積的最小值為(
A. ??
B. ??
C. ??
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖所示的程序框圖,則該算法的功能是(
A.計(jì)算數(shù)列{2n1}前5項(xiàng)的和
B.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
C.計(jì)算數(shù)列{2n1}前6項(xiàng)的和
D.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的導(dǎo)函數(shù), 為自然對(duì)數(shù)的底數(shù).
(1)討論 的單調(diào)性;
(2)當(dāng) 時(shí),證明: ;
(3)當(dāng) 時(shí),判斷函數(shù) 零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù)a,b滿足a+2b=9.
(1)若|9﹣2b|+|a+1|<3,求a的取值范圍;
(2)若a,b>0,且z=ab2 , 求z的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案