【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若的圖象與軸有三個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是;(2)
【解析】
(1)優(yōu)先確定定義域,利用導(dǎo)數(shù),函數(shù)單調(diào)遞增,,函數(shù)單調(diào)遞減,求得單調(diào)區(qū)間;
(2)利用轉(zhuǎn)化思想將要求轉(zhuǎn)化為函數(shù)與函數(shù)的圖象有三個(gè)不同交點(diǎn),進(jìn)而應(yīng)位于函數(shù)的兩個(gè)極值之間,再利用導(dǎo)數(shù)求得函數(shù)的極值即可求得答案.
(1)因?yàn)楹瘮?shù),則定義域?yàn)?/span>R,
且
令,所以函數(shù)在區(qū)間上單調(diào)遞增;
令或,所以函數(shù)在區(qū)間上單調(diào)遞減;
故函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.
(2)條件中的圖象與軸有三個(gè)交點(diǎn),等價(jià)于有三個(gè)不同的根,進(jìn)而等價(jià)于函數(shù)與函數(shù)的圖象有三個(gè)不同交點(diǎn),
因?yàn)?/span>,且定義域?yàn)?/span>R,
令,求得或3
所以有
x | -1 | 3 | |||
+ | 0 | - | 0 | + | |
極大值 | 極小值 |
所以函數(shù)在處取得極大值,為;在處取得極小值,為,
因?yàn)楹瘮?shù)與函數(shù)的圖象有三個(gè)不同交點(diǎn),則應(yīng)位于函數(shù)的兩個(gè)極值之間,則
故實(shí)數(shù)的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)(1,f(1))處的切線方程;
(2)求經(jīng)過(guò)點(diǎn)A(1,3)的曲線的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,定點(diǎn),為圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若過(guò)定點(diǎn)的直線交曲線于不同的兩點(diǎn),(點(diǎn)在點(diǎn),之間),且滿(mǎn)足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間幾何體ABCDE中,△BCD與△CDE均是邊長(zhǎng)為2的等邊三角形,△ABC是腰長(zhǎng)為3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.
(1)試在平面BCD內(nèi)作一條直線,使得直線上任意一點(diǎn)F與E的連線EF均與平面ABC平行,并給出證明;
(2)求三棱錐E-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù)().
(1)當(dāng)時(shí),求的定義域;
(2)若,討論時(shí),的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是()
A. “,若,則且”是真命題
B. 在同一坐標(biāo)系中,函數(shù)與的圖象關(guān)于軸對(duì)稱(chēng).
C. 命題“,使得”的否定是“,都有”
D. ,“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)數(shù)函數(shù)g(x)=1ogax(a>0,a≠1)和指數(shù)函數(shù)f(x)=ax(a>0,a≠1)互為反函數(shù).已知函數(shù)f(x)=3x,其反函數(shù)為y=g(x).
(Ⅰ)若函數(shù)g(kx2+2x+1)的定義域?yàn)?/span>R,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定義在I上的函數(shù)F(x),如果滿(mǎn)足:對(duì)任意x∈I,總存在常數(shù)M>0,都有-M≤F(x)≤M成立,則稱(chēng)函數(shù)F(x)是I上的有界函數(shù),其中M為函數(shù)F(x)的上界.若函數(shù)h(x)=,當(dāng)m≠0時(shí),探求函數(shù)h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)袋中有4個(gè)大小相同的小球,其中紅球1個(gè),白球2個(gè),黑球1個(gè),現(xiàn)從袋中有放回地取球,每次隨機(jī)取一個(gè),求
(1)連續(xù)取兩次都是白球的概率;
(2)若取一個(gè)紅球記2分,取一個(gè)白球記1分,取一個(gè)黑球記0分,連續(xù)取三次分?jǐn)?shù)之和為4分的概率.(本小題基本事件總數(shù)較多不要求列舉,但是所求事件含的基本事件要列舉)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)一個(gè)整點(diǎn)的有限集稱(chēng)為一個(gè)雙鄰集,如果對(duì)內(nèi)每個(gè)點(diǎn),恰有點(diǎn)、、、中的兩點(diǎn)在內(nèi).問(wèn)對(duì)怎樣的正整數(shù),存在一個(gè)雙鄰集恰包含個(gè)整點(diǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com