【題目】在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,,,,.
(1)求證:平面FBC;
(2)線段ED上是否存在點(diǎn)Q,使平面平面QBC?證明你的結(jié)論.
【答案】(1)證明見解析(2)線段ED上不存在點(diǎn)Q,使平面平面QBC,證明見解析
【解析】
(1)利用余弦定理和勾股定理的逆定理可得,再利用已知和線面垂直的判定定理即可證明;
(2)通過(guò)建立空間直角坐標(biāo)系,利用兩個(gè)平面的法向量是否垂直來(lái)判斷即可.
解:(1)證明:,,
在中,由余弦定理可得,
,.
.
又,,
平面FBC.
(2)線段ED上不存在點(diǎn)Q,使平面平面QBC.
證明如下:
因?yàn)?/span>平面FBC,所以.
因?yàn)?/span>,所以平面ABCD.
所以CA,CF,CB兩兩互相垂直,
如圖建立的空間直角坐標(biāo)系.
在等腰梯形ABCD中,可得.
設(shè),所以,,,,.
所以,,.
設(shè)平面EAC的法向量為,則,
所以,取,得.
假設(shè)線段ED上存在點(diǎn)Q,設(shè),
所以.
設(shè)平面QBC的法向量為,則,
所以,
取,得.
要使平面平面QBC,只需,
即,此方程無(wú)解.
所以線段ED上不存在點(diǎn)Q,使平面平面QBC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,過(guò)點(diǎn)C的直線與線段、分別相交于點(diǎn)M、N,若,;
(1)求y關(guān)于x的函數(shù)解析式;
(2)定義函數(shù)(),點(diǎn)列(,)在函數(shù)的圖像上,且數(shù)列是以1為首項(xiàng),0.5為公比的等比數(shù)列,O為原點(diǎn),令,是否存在點(diǎn),使得?若存在,求出Q點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由;
(3)設(shè)函數(shù)為上的偶函數(shù),當(dāng)時(shí),,又函數(shù)的圖像關(guān)于直線對(duì)稱,當(dāng)方程在()上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)性;
(2)若在區(qū)間上有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)商功》中闡述:“斜解立方,得兩塹堵.斜解塹堵,其一為陽(yáng)馬,一為鱉臑.陽(yáng)馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”若稱為“陽(yáng)馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,對(duì)該幾何體有如下描述:
①四個(gè)側(cè)面都是直角三角形;
②最長(zhǎng)的側(cè)棱長(zhǎng)為;
③四個(gè)側(cè)面中有三個(gè)側(cè)面是全等的直角三角形;
④外接球的表面積為24π.
其中正確的描述為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,側(cè)棱底面,為棱的中點(diǎn),.
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C以點(diǎn)為圓心,且被直線截得的弦長(zhǎng)為.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l經(jīng)過(guò)點(diǎn),且與圓C相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】焦點(diǎn)在x軸上的橢圓C:經(jīng)過(guò)點(diǎn),橢圓C的離心率為.,是橢圓的左、右焦點(diǎn),P為橢圓上任意點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M為的中點(diǎn)(O為坐標(biāo)原點(diǎn)),過(guò)M且平行于OP的直線l交橢圓C于A,B兩點(diǎn),是否存在實(shí)數(shù),使得;若存在,請(qǐng)求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為慶祝國(guó)慶節(jié),某中學(xué)團(tuán)委組織了“歌頌祖國(guó),愛我中華”知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名,將其成績(jī)(成績(jī)均為整數(shù))分成[40,50),[50,60),…,[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問(wèn)題:
(1)求第四組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)將甲、乙、丙、丁四個(gè)人安排到座位號(hào)分別是的四個(gè)座位上,他們分別有以下要求,
甲:我不坐座位號(hào)為和的座位;
乙:我不坐座位號(hào)為和的座位;
丙:我的要求和乙一樣;
丁:如果乙不坐座位號(hào)為的座位,我就不坐座位號(hào)為的座位.
那么坐在座位號(hào)為的座位上的是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com