【題目】已知函數(shù)).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)設(shè),當(dāng)時(shí),若對(duì)任意,存在,使,求實(shí)數(shù)的取值范圍.

【答案】(1)當(dāng)時(shí),增區(qū)間為,減區(qū)間為;當(dāng)時(shí),增區(qū)間為,減區(qū)間為;當(dāng)時(shí),減區(qū)間為;(2)

【解析】

試題分析:(1)首先求得函數(shù)的定義域與導(dǎo)函數(shù),然后分、求得函數(shù)的單調(diào)區(qū)間;(2)首先結(jié)合(1)求得當(dāng)時(shí)的最小值,然后利用分離參數(shù)法得,由此令,從而根據(jù)的單調(diào)性求得其最小值,進(jìn)而求得的取值范圍.

試題解析:(1)的定義域?yàn)?/span>,

當(dāng)時(shí),由,的單調(diào)增區(qū)間為

,的單調(diào)減區(qū)間為

當(dāng)時(shí),由的單調(diào)增區(qū)間為,

的單調(diào)減區(qū)間為

當(dāng)時(shí),由,的單調(diào)增區(qū)間為,

,的單調(diào)減區(qū)間為.

當(dāng)時(shí),,的單調(diào)減區(qū)間為

綜上所述當(dāng)時(shí),的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

當(dāng)時(shí),的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,

當(dāng)時(shí),的單調(diào)減區(qū)間為.

(2)當(dāng)時(shí),由(1)知,,依題意有,

上有解,

,知單調(diào)遞減,在單調(diào)遞增,

,的取值范圍為.

或用,而,對(duì)分三種情況:

無(wú)解;

.

綜上:的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,分別為左、右頂點(diǎn),為其右焦點(diǎn),是橢圓上異于的動(dòng)點(diǎn),且的最小值為-2

1求橢圓的標(biāo)準(zhǔn)方程;

2若過(guò)左焦點(diǎn)的直線交橢圓兩點(diǎn),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】衡陽(yáng)市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者,現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名后按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示

1若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)的宣傳活動(dòng),則應(yīng)從第3,4,5組各抽取多少名志愿者?

21的條件下,該市決定在第3,4組的志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,底面,上的點(diǎn)

1求證:平面

2設(shè),若的中點(diǎn),且直線與平面所成角的正弦值為,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率為

1求橢圓的標(biāo)準(zhǔn)方程;

2若點(diǎn)與點(diǎn)均在橢圓上,且關(guān)于原點(diǎn)對(duì)稱,問(wèn):橢圓上是否存在點(diǎn)點(diǎn)在一象限,使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富高學(xué)生的課外生活,某校要組建數(shù)學(xué)計(jì)算機(jī)航空模型3個(gè)興趣小組,小明要選報(bào)其中的2個(gè),則包含的樣本點(diǎn)共有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】10名學(xué)生中,男生有x名,現(xiàn)從10名學(xué)生中任選6人去參加某項(xiàng)活動(dòng):①至少有1名女生;②5名男生,1名女生;③3名男生,3名女生.若要使①為必然事件,②為不可能事件,③為隨機(jī)事件,則x( )

A.5B.6C.34D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三視圖如圖所示單位長(zhǎng)度為:cm

1求該幾何體的體積;

2求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為為橢圓上一點(diǎn)(在軸上方),連結(jié)并延長(zhǎng)交橢圓于另一點(diǎn),設(shè).

(1)若點(diǎn)的坐標(biāo)為,且的周長(zhǎng)為8,求橢圓的方程;

(2)若垂直于軸,且橢圓的離心率,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案