【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,為橢圓上一點(diǎn)(在軸上方),連結(jié)并延長(zhǎng)交橢圓于另一點(diǎn),設(shè).
(1)若點(diǎn)的坐標(biāo)為,且的周長(zhǎng)為8,求橢圓的方程;
(2)若垂直于軸,且橢圓的離心率,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)[,5].
【解析】
試題分析:(1)根據(jù)橢圓定義,將三角形周長(zhǎng)轉(zhuǎn)化為:4a=8,再結(jié)合點(diǎn)P在橢圓上,得,解方程組得a=2,b2=3.(2)由于垂直于軸,所以P(c,).再根據(jù),可求得Q(-c,-).代入橢圓方程得+=1,即λ=,最后根據(jù),確定實(shí)數(shù)的取值范圍.
試題解析:(1)因?yàn)镕1,F(xiàn)2為橢圓C的兩焦點(diǎn),且P,Q為橢圓上的點(diǎn),
所以PF1+PF2=QF1+QF2=2a,從而△PQF2的周長(zhǎng)為4a.
由題意,得4a=8,解得a=2.
因?yàn)辄c(diǎn)P的坐標(biāo)為 (1,),所以,
解得b2=3.
所以橢圓C的方程為.
(2)方法一:因?yàn)?/span>PF2⊥x軸,且P在x軸上方,故設(shè)P(c,y0),y0>0.設(shè)Q(x1,y1).
因?yàn)镻在橢圓上,所以,解得y0=,即P(c,).
因?yàn)镕1(-c,0),所以=(-2c,-),=(x1+c,y1).
由=λ,得-2c=λ(x1+c),-=λy1,
解得x1=-c,y1=-,所以Q(-c,-).
因?yàn)辄c(diǎn)Q在橢圓上,所以()2e2+=1,
即(λ+2)2e2+(1-e2)=λ2,(λ2+4λ+3)e2=λ2-1,
因?yàn)?/span>λ+1≠0,
所以(λ+3)e2=λ-1,從而λ=.
因?yàn)閑∈[,],所以≤e2≤,即≤λ≤5.
所以λ的取值范圍為[,5].
方法二:因?yàn)?/span>PF2⊥x軸,且P在x軸上方,故設(shè)P(c,y0),y0>0.
因?yàn)镻在橢圓上,所以+=1,解得y0=,即P(c,).
因?yàn)镕1(-c,0),故直線PF1的方程為y= (x+c).
由,得(4c2+b2)x2+2b2cx+c2(b2-4a2)=0.
因?yàn)橹本PF1與橢圓有一個(gè)交點(diǎn)為P(c,).設(shè)Q(x1,y1),
則x1+c=-,即-c-x1=.
因?yàn)?/span>=λ,
所以λ=====.
因?yàn)閑∈[,],所以≤e2≤,即≤λ≤5.
所以λ的取值范圍為[,5].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)設(shè),當(dāng)時(shí),若對(duì)任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法不正確的是( )
A. , 為不共線向量,若,則
B. 若, 為平面內(nèi)兩個(gè)不相等向量,則平面內(nèi)任意向量都可以表示為
C. 若, ,則與不一定共線
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
⑴從區(qū)間內(nèi)任取一個(gè)實(shí)數(shù),設(shè)事件表示“函數(shù)在區(qū)間上有兩個(gè)不同的零點(diǎn)”,求事件發(fā)生的概率;
⑵若聯(lián)系擲兩次一顆均勻的骰子(骰子六個(gè)面上標(biāo)注的點(diǎn)數(shù)分別為)得到的點(diǎn)數(shù)分別為和,記事件表示“在上恒成立”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn), 的距離之比等于.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為,過(guò)點(diǎn)的直線被所截得的線段的長(zhǎng)為,求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”活動(dòng). 為了了解本次競(jìng)賽學(xué)生成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì). 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的,的值;
(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),設(shè)表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線: 恒過(guò)定點(diǎn),圓經(jīng)過(guò)點(diǎn)和點(diǎn),且圓心在直線上.
(1)求定點(diǎn)的坐標(biāo);
(2)求圓的方程;
(3)已知點(diǎn)為圓直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn),問(wèn):在軸上是否存在一點(diǎn),使得為直角三角形,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的有__________.(寫出所有正確說(shuō)法的序號(hào))
①已知關(guān)于的不等式的角集為,則實(shí)數(shù)的取值范圍是.
②已知等比數(shù)列的前項(xiàng)和為,則、、也構(gòu)成等比數(shù)列.
③已知函數(shù)(其中且)在上單調(diào)遞減,且關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)解,則.
④已知,且,則的最小值為.
⑤在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn), 則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體中,分別是的中點(diǎn),,過(guò)三點(diǎn)的的平面截去長(zhǎng)方體的一個(gè)角后.得到如圖所示的幾何體,且這個(gè)幾何體的體積為.
(1)求證:平面;
(2)求的長(zhǎng);
(3)在線段上是否存在點(diǎn),使直線與垂直,如果存在,求線段的長(zhǎng),如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com