【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點.
(1)求證:AE⊥B1C;
(2)求異面直線AE與A1C所成的角的大;
(3)若G為C1C中點,求二面角C-AG-E的正切值.
【答案】(1)見解析;(2);(3)
【解析】
(1)由BB1⊥面ABC及線面垂直的性質(zhì)可得AE⊥BB1,由AC=AB,E是BC的中點,及等腰三角形三線合一,可得AE⊥BC,結(jié)合線面垂直的判定定理可證得AE⊥面BB1C1C,進而由線面垂直的性質(zhì)得到AE⊥B1C;
(2)取B1C1的中點E1,連A1E1,E1C,根據(jù)異面直線夾角定義可得,∠E1A1C是異面直線A與A1C所成的角,設AC=AB=AA1=2,解三角形E1A1C可得答案.
(3)連接AG,設P是AC的中點,過點P作PQ⊥AG于Q,連EP,EQ,則EP⊥AC,由直三棱錐的側(cè)面與底面垂直,結(jié)合面面垂直的性質(zhì)定理,可得EP⊥平面ACC1A1,進而由二面角的定義可得∠PQE是二面角C-AG-E的平面角.
證明:(1)因為BB1⊥面ABC,AE面ABC,所以AE⊥BB1
由AB=AC,E為BC的中點得到AE⊥BC
∵BC∩BB1=B∴AE⊥面BB1C1C
∴AE⊥B1C
解:(2)取B1C1的中點E1,連A1E1,E1C,
則AE∥A1E1,
∴∠E1A1C是異面直線AE與A1C所成的角.
設AC=AB=AA1=2,則由∠BAC=90°,
可得A1E1=AE=,A1C=2,E1C1=EC=BC=
∴E1C==
∵在△E1A1C中,cos∠E1A1C==
所以異面直線AE與A1C所成的角為.
(3)連接AG,設P是AC的中點,過點P作PQ⊥AG于Q,連EP,EQ,則EP⊥AC
又∵平面ABC⊥平面ACC1A1
∴EP⊥平面ACC1A1
而PQ⊥AG∴EQ⊥AG.
∴∠PQE是二面角C-AG-E的平面角.
由EP=1,AP=1,PQ=,得tan∠PQE==
所以二面角C-AG-E的平面角正切值是
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦點與雙曲線的焦點重合,過橢圓的右頂點任意作直線,交拋物線于,兩點,且,其中為坐標原點.
(1)試求橢圓的方程;
(2)過橢圓的左焦點作互相垂直的兩條直線,分別交橢圓于點、、、,試求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù)且不恒為零,對滿足,且在上單調(diào)遞增.
(1)求,的值,并判斷函數(shù)的奇偶性;
(2)求的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù)滿足以下三個條件:
①對任意實數(shù),都有;
②;
③在區(qū)間上為增函數(shù).
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)求證:;
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,橢圓C:離心率為,其短軸長為2.
(1)求橢圓C的標準方程;
(2)如圖,A為橢圓C的左頂點,P,Q為橢圓C上兩動點,直線PO交AQ于E,直線QO交AP于D,直線OP與直線OQ的斜率分別為,,且, ,(為非零實數(shù)),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,
①若曲線與直線相切,求的值;
②若曲線與直線有公共點,求的取值范圍.
(2)當時,不等式對于任意正實數(shù)恒成立,當取得最大值時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸,的中點為,過且垂直于線段的直線交射線于點.
(I)求點的橫坐標;
(II)當最大時,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且曲線在點處的切線與軸垂直.
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意(其中為自然對數(shù)的底數(shù)),都有恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com