【題目】已知函數(shù),且曲線在點處的切線與軸垂直.
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意(其中為自然對數(shù)的底數(shù)),都有恒成立,求的取值范圍.
【答案】(Ⅰ)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.
(Ⅱ) .
【解析】試題分析:
(Ⅰ)由導數(shù)的幾何意義及條件可得,解得.然后由導函數(shù)大于(小于)零可得函數(shù)的單調(diào)區(qū)間.(Ⅱ)由(Ⅰ)可得,令 ,結(jié)合導數(shù)可得時,單調(diào)遞減,故.由,可得.然后再驗證當時,成立即可.本題也可分為和兩種情況分別求出的取值范圍,然后取其并集即可.
試題解析:
(Ⅰ)的定義域為,
∵,定義域為,
∴.
由題意知,解得,
∴,
由,解得;由,解得,
的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.
(Ⅱ)由(Ⅰ)知,
.
法一:設,則,
令,則,
時,,故在上單調(diào)遞減,
,
時,,單調(diào)遞減,
時,,
由題意知,又
.
下面證明當時,成立,
即證成立,
令,則,
由,得在是增函數(shù),
時,,
成立,即成立,
故正數(shù)的取值范圍是.
法二:①當時,可化為,
令,則問題轉(zhuǎn)化為證明對任意恒成立.
又,
令,得,令,得,
∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
當時,下面驗證.
設,則.
所以在上單調(diào)遞減,
所以.即.
故此時不滿足對任意恒成立;
當時,函數(shù)在上單調(diào)遞增.
故對任意恒成立,
故符合題意.
綜合,得.
②當時,,則問題轉(zhuǎn)化為證明對任意恒成立.
又,
令得 ;令,得,
∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
當時,在上是增函數(shù),所以
當時,在上單調(diào)遞增,在上單調(diào)遞減,
所以只需,即
當時,在上單調(diào)遞減,則需.
因為不符合題意.
綜合可得.
由①②得正數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點.
(1)求證:AE⊥B1C;
(2)求異面直線AE與A1C所成的角的大小;
(3)若G為C1C中點,求二面角C-AG-E的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】進入冬天,大氣流動性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關性,以確定是否對車輛實施限行.為此,環(huán)保部門采集到該城市過去一周內(nèi)某時段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:
(1)根據(jù)表中周一到周五的數(shù)據(jù),求y關于x的線性回歸方程。
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的.請根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?
注:回歸方程中斜率和截距最小二乘估計公式分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題說法中正確的是
A. 對于實數(shù),“”是或的充分不必要條件
B. 已知都是整數(shù),則命題“若,則不都是奇數(shù)”是假命題
C. “若,則關于的方程有實根”的逆否命題為假命題
D. 命題“全等三角形的面積相等”的否命題為真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設關于某設備的使用年限(年)和所支出的年平均維修費用(萬元)(即維修費用之和除以使用年限),有如下的統(tǒng)計資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖;
(2)求關于的線性回歸方程;
(3)估計使用年限為10年時所支出的年平均維修費用是多少?
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】按照國家質(zhì)量標準:某種工業(yè)產(chǎn)品的質(zhì)量指標值落在[100,120)內(nèi),則為合格品,否則為不合格品.某企業(yè)有甲乙兩套設備生產(chǎn)這種產(chǎn)品,為了檢測這兩套設備的生產(chǎn)質(zhì)量情況,隨機從兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本對規(guī)定的質(zhì)量指標值進行檢測.表1是甲套設備的樣本頻數(shù)分布表,圖1是乙套設備的樣本頻率分布直方圖.
質(zhì)量指標值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
表1:甲套設備的樣本頻數(shù)分布表
(1)將頻率視為概率,若乙套設備生產(chǎn)了5000件產(chǎn)品,則其中合格品約有多少件?
(2)填寫下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認為這種產(chǎn)品的質(zhì)量指標值與甲乙兩套設備的選擇有關:
甲套設備 | 乙套設備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(3)根據(jù)表和圖,對甲、乙兩套設備的優(yōu)劣進行比較.參考公式及數(shù)據(jù):x2=
P(Х2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若直線與軸交于點,與曲線交于點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】按照國家質(zhì)量標準:某種工業(yè)產(chǎn)品的質(zhì)量指標值落在[100,120)內(nèi),則為合格品,否則為不合格品.某企業(yè)有甲乙兩套設備生產(chǎn)這種產(chǎn)品,為了檢測這兩套設備的生產(chǎn)質(zhì)量情況,隨機從兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本對規(guī)定的質(zhì)量指標值進行檢測.表1是甲套設備的樣本頻數(shù)分布表,圖1是乙套設備的樣本頻率分布直方圖.
質(zhì)量指標值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
表1:甲套設備的樣本頻數(shù)分布表
(1)將頻率視為概率,若乙套設備生產(chǎn)了5000件產(chǎn)品,則其中合格品約有多少件?
(2)填寫下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認為這種產(chǎn)品的質(zhì)量指標值與甲乙兩套設備的選擇有關:
甲套設備 | 乙套設備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(3)根據(jù)表和圖,對甲、乙兩套設備的優(yōu)劣進行比較.參考公式及數(shù)據(jù):x2=
P(Х2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com