【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若直線與軸交于點,與曲線交于點,且,求實數(shù)的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點為別為、,且過點和.
(1)求橢圓的標準方程;
(2)如圖,點為橢圓上一動點(非長軸端點),的延長線與橢圓交于點,的延長線與橢圓交于點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年某市有2萬多文科考生參加高考,除去成績?yōu)?/span>670分(含670分)以上的3人與成績?yōu)?/span>350分(不含350分)以下的3836人,還有約1.9萬文科考生的成績集中在內(nèi),其成績的頻率分布如下表所示:
分數(shù)段 | ||||
頻率 | ||||
分數(shù)段 | ||||
頻率 |
(1)試估計該次高考成績在內(nèi)文科考生的平均分(精確到);
(2)一考生填報志愿后,得知另外有4名同分數(shù)考生也填報了該志愿.若該志愿計劃錄取3人,并在同分數(shù)考生中隨機錄取,求該考生不被該志愿錄取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面幾何中,有邊長為的正三角形內(nèi)任意點到三邊距離之和為定值.類比上述命題,棱長為的正四面體內(nèi)任一點到四個面的距離之和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果數(shù)列對任意的滿足:,則稱數(shù)列為“數(shù)列”.
(1)已知數(shù)列是“數(shù)列”,設(shè),求證:數(shù)列是遞增數(shù)列,并指出與的大小關(guān)系(不需要證明);
(2)已知數(shù)列是首項為,公差為的等差數(shù)列,是其前項的和,若數(shù)列是“數(shù)列”,求的取值范圍;
(3)已知數(shù)列是各項均為正數(shù)的“數(shù)列”,對于取相同的正整數(shù)時,比較和的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點為圓上的動點,點在軸上的投影為,動點滿足,動點的軌跡為.
(1)求的方程;
(2)設(shè)與軸正半軸的交點為,過點的直線的斜率為,與交于另一點為.若以點為圓心,以線段長為半徑的圓與有4個公共點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù):f(x)=x2﹣mx﹣n(m, n∈R).
(1)若m+n=0,解關(guān)于x的不等式f(x)≥x(結(jié)果用含m式子表示);
(2)若存在實數(shù)m,使得當x∈[1,2]時,不等式x≤f(x)≤4x恒成立,求實數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)若函數(shù)的圖象在處的切線斜率為1,求實數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com