【題目】2017年某市有2萬多文科考生參加高考,除去成績?yōu)?/span>670分(含670分)以上的3人與成績?yōu)?/span>350分(不含350分)以下的3836人,還有約1.9萬文科考生的成績集中在內(nèi),其成績的頻率分布如下表所示:
分?jǐn)?shù)段 | ||||
頻率 | ||||
分?jǐn)?shù)段 | ||||
頻率 |
(1)試估計該次高考成績在內(nèi)文科考生的平均分(精確到);
(2)一考生填報志愿后,得知另外有4名同分?jǐn)?shù)考生也填報了該志愿.若該志愿計劃錄取3人,并在同分?jǐn)?shù)考生中隨機錄取,求該考生不被該志愿錄取的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是
A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),且的定義域為,.
(1)求實數(shù)的值,使函數(shù)為奇函數(shù);
(2)在(1)的條件下,令,求使方程,有解的實數(shù)的取值范圍;
(3)在(1)的條件下,不等式對于任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)若與曲線相切,且與坐標(biāo)軸交于兩點,求以為直徑的圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x),當(dāng)x≥0時,f(x)=(x﹣1)2﹣1的圖象如圖所示,
(1)請補全函數(shù)f(x)的圖象并寫出它的單調(diào)區(qū)間.
(2)根據(jù)圖形寫出函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與軸交于點,與曲線交于點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°.動點E和F分別在線段BC和DC上,且.
(1)當(dāng)λ,求||;
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是偶函數(shù)的導(dǎo)函數(shù),在區(qū)間上的唯一零點為2,并且當(dāng)時,,則使得成立的的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com