【題目】在①,②),③)這三個條件中任選一個,補充在下面的問題中,若問題中的k存在,求出k的值;若k不存在,說明理由.已知數(shù)列為等比數(shù)列,,數(shù)列的首項,其前n項和為,______,是否存在,使得對任意恒成立?

注:如果選擇多個條件分別解答,按第一個解答計分.

【答案】見解析

【解析】

由數(shù)列為等比數(shù)列可得,①通過,整理可得,進(jìn)而可求出數(shù)列的通項公式,求出,利用單調(diào)性可判斷;②由可得數(shù)列為等比數(shù)列,求出數(shù)列的通項公式,求出,利用單調(diào)性可判斷;③由知數(shù)列是等差數(shù)列,求出數(shù)列的通項公式,求出,利用作差法求最大項即可判斷..

設(shè)等比數(shù)列的公比為q,因為,所以

所以,

.

若選擇①,則,則),兩式相減整理得),又,

所以是首項為1,公比為2的等比數(shù)列,所以

所以

由指數(shù)函數(shù)的性質(zhì)知,數(shù)列單調(diào)遞增,沒有最大值,

所以不存在,使得對任意,恒成立.

若選擇②,則由),,知數(shù)列是首項為1,公比為的等比數(shù)列,

所以

所以

因為.當(dāng)且僅當(dāng)時取得最大值.

所以存在,使得對任意,恒成立.

若選擇③,則由)知數(shù)列是公差為2的等差數(shù)列.

,所以.

設(shè),

所以當(dāng)時,,當(dāng)時,.

所以存在,使得對任意,恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求的普通方程和的直角坐標(biāo)方程;

(Ⅱ)若交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中, , 的中點.

(1)證明: 平面;

(2)若,點在平面的射影在上,且側(cè)面的面積為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y24x焦點F的直線交該拋物線于A,B兩點,且|AB|4,若原點O是△ABC的垂心,則點C的坐標(biāo)為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對該關(guān)鍵詞的搜索次數(shù)越多,對該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是20199月到20202月這半年中,某個關(guān)鍵詞的搜索指數(shù)變化的走勢圖.

根據(jù)該走勢圖,下列結(jié)論不正確的是( .

A.這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度與時間具有比較明顯的線性相關(guān)性

B.201910月網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)變化的走勢圖具有較好的對稱性,與正態(tài)曲線相近,故當(dāng)月搜索指數(shù)的平均值約為29000

C.從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,201910月的方差小于11月的方差

D.從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,201912月的平均值大于20201月的平均值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以塔底座的邊作方形.作方圓圖,會發(fā)現(xiàn)方圓的切點正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點的距離不超過米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產(chǎn)企業(yè)加班加點生產(chǎn)口罩、防護(hù)服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應(yīng),在國際社會上贏得一片贊譽.我國某口罩生產(chǎn)廠商在加大生產(chǎn)的同時.狠抓質(zhì)量管理,不定時抽查口罩質(zhì)量,該廠質(zhì)檢人員從某日所生產(chǎn)的口罩中隨機(jī)抽取了100個,將其質(zhì)量指標(biāo)值分成以下五組:,,,,得到如下頻率分布直方圖.

1)規(guī)定:口罩的質(zhì)量指標(biāo)值越高,說明該口罩質(zhì)量越好,其中質(zhì)量指標(biāo)值低于130的為二級口罩,質(zhì)量指標(biāo)值不低于130的為一級口罩.現(xiàn)從樣本口罩中利用分層抽樣的方法隨機(jī)抽取8個口罩,再從中抽取3個,記其中一級口罩個數(shù)為,求的分布列及數(shù)學(xué)期望;

2)在2020五一勞動節(jié)前,甲,乙兩人計劃同時在該型號口罩的某網(wǎng)絡(luò)購物平臺上分別參加、兩店各一個訂單秒殺搶購,其中每個訂單由個該型號口罩構(gòu)成.假定甲、乙兩人在兩店訂單秒殺成功的概率分別為,,記甲、乙兩人搶購成功的訂單總數(shù)量、口罩總數(shù)量分別為,,

①求的分布列及數(shù)學(xué)期望;

②求當(dāng)的數(shù)學(xué)期望取最大值時正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知點A是拋物線的對稱軸與準(zhǔn)線的交點,點B為拋物線的焦點,P在拋物線上且滿足,當(dāng)取最大值時,點P恰好在以A、B為焦點的雙曲線上,則雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,底面是正方形,側(cè)面底面,,,的中點,點上,且.

1)求證:;

2)求點到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案