【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)求的普通方程和的直角坐標(biāo)方程;
(Ⅱ)若與交于,兩點(diǎn),求的值.
【答案】(Ⅰ)的普通方程為;的直角坐標(biāo)方程;(Ⅱ).
【解析】
(Ⅰ)消去參數(shù)即可求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得的直角坐標(biāo)方程;
(Ⅱ)理解參數(shù)的幾何意義并利用其幾何意義,聯(lián)立直線(xiàn)和曲線(xiàn)方程,利用韋達(dá)定理進(jìn)行運(yùn)算求解即可.
(1)由(為參數(shù)),消去參數(shù),得,
即的普通方程為.
由,得,
將,代入,得,
即的直角坐標(biāo)方程.
(2)由(為參數(shù)),可得(),
故的幾何意義是拋物線(xiàn)上的點(diǎn)(原點(diǎn)除外)與原點(diǎn)連線(xiàn)的斜率.
由題意知,當(dāng)時(shí),,
則與只有一個(gè)交點(diǎn)不符合題意,故.
把(為參數(shù))代入,
得,設(shè)此方程的兩根分別為,,
由韋達(dá)定理可得,,,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過(guò)點(diǎn).點(diǎn)M(3,m)在雙曲線(xiàn)上.
(1)求雙曲線(xiàn)的方程;
(2)求證:;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若,求的單調(diào)區(qū)間和極值點(diǎn);
(2)若在單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成等腰直角三角形,
直線(xiàn)與以橢圓C的右焦點(diǎn)為圓心,以橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓C上一點(diǎn),若過(guò)點(diǎn)的直線(xiàn)與橢圓C相交于不同的兩點(diǎn)S和T,
滿(mǎn)足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校實(shí)行選科走班制度,張毅同學(xué)的選擇是物理、生物、政治這三科,且物理在層班級(jí),生物在層班級(jí).該校周一上午選科走班的課程安排如下表所示,張毅選擇三個(gè)科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法有( )
第一節(jié) | 第二節(jié) | 第三節(jié) | 第四節(jié) |
地理層2班 | 化學(xué)層3班 | 地理層1班 | 化學(xué)層4班 |
生物層1班 | 化學(xué)層2班 | 生物層2班 | 歷史層1班 |
物理層1班 | 生物層3班 | 物理層2班 | 生物層4班 |
物理層2班 | 生物層3班 | 物理層1班 | 物理層4班 |
政治1班 | 物理層3班 | 政治2班 | 政治3班 |
A.8種B.10種C.12種D.14種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令其圖象上任意一點(diǎn)處切線(xiàn)的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電動(dòng)汽車(chē)“行車(chē)數(shù)據(jù)”的兩次記錄如下表:
記錄時(shí)間 | 累計(jì)里程 (單位:公里) | 平均耗電量(單位:公里) | 剩余續(xù)航里程 (單位:公里) |
2019年1月1日 | 4000 | 0.125 | 280 |
2019年1月2日 | 4100 | 0.126 | 146 |
(注:累計(jì)里程指汽車(chē)從出廠(chǎng)開(kāi)始累計(jì)行駛的路程,累計(jì)耗電量指汽車(chē)從出廠(chǎng)開(kāi)始累計(jì)消耗的電量,平均耗電量=,剩余續(xù)航里程=,下面對(duì)該車(chē)在兩次記錄時(shí)間段內(nèi)行駛100公里的耗電量估計(jì)正確的是
A. 等于12.5B. 12.5到12.6之間
C. 等于12.6D. 大于12.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某高校學(xué)生中午午休時(shí)間玩手機(jī)情況,隨機(jī)抽取了100名大學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均午休時(shí)間的頻率分布直方圖,將日均午休時(shí)玩手機(jī)不低于40分鐘的學(xué)生稱(chēng)為“手機(jī)控”.
(1)求列聯(lián)表中未知量的值;
非手機(jī)控 | 手機(jī)控 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)能否有的把握認(rèn)為“手機(jī)控與性別有關(guān)”?
.
0.05 | 0.10 | |
3.841 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com