分析 由已知畫出可行域,利用目標函數(shù)的幾何意義求其最大值.
解答 解:x,y滿足的平面區(qū)域如圖:由z=x-3y得到y(tǒng)=$\frac{1}{3}$x-$\frac{1}{3}$z,當此直線經(jīng)過圖中C時z最小,
由$\left\{\begin{array}{l}{x-y-1=0}\\{4x+y-9=0}\end{array}\right.$得到C(2,1),所以z最小值為2-3=-1;
故答案為:-1.
點評 本題考查了線性規(guī)劃在去目標函數(shù)中的最值的應(yīng)用,解題的關(guān)鍵是明確目標函數(shù)的幾何意義.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,1] | B. | [2,$\frac{5}{2}$] | C. | [-1,8] | D. | (-∞,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 存在x0>0,使得x0<sinx0 | |
B. | 若sinα≠$\frac{1}{2}$,則α≠$\frac{π}{6}$ | |
C. | “-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間($\frac{1}{2}$,2)上有零點”的必要不充分條件 | |
D. | 若函數(shù)f(x)=x3+3ax2+bx+a2在x=-1有極值0,則a=2,b=9或a=1,b=3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com