分析 利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=$\sqrt{3}$sin(x+$\frac{π}{6}$),令2kπ-$\frac{π}{2}$≤x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,即可解得單調(diào)遞增區(qū)間.
解答 解:∵$f(x)=cos(x-\frac{π}{2})+sin(x+\frac{π}{3})$=sinx+$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx=$\sqrt{3}$sin(x+$\frac{π}{6}$),
令2kπ-$\frac{π}{2}$≤x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:2kπ-$\frac{2π}{3}$≤x≤2kπ+$\frac{π}{3}$,k∈Z,
∴函數(shù)$f(x)=cos(x-\frac{π}{2})+sin(x+\frac{π}{3})$的單調(diào)遞增區(qū)間為:$(2kπ-\frac{2π}{3},2kπ+\frac{π}{3})k∈Z$.
故答案為:$(2kπ-\frac{2π}{3},2kπ+\frac{π}{3})k∈Z$.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的單調(diào)性的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分條件 | B. | 必要條件 | ||
C. | 既不是充分條件也不是必要條件 | D. | 無(wú)法判斷 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m∥n,m⊥α,則n⊥α | B. | 若m∥α,n∥α,則m∥n | C. | 若m⊥α,m∥β,則α∥β | D. | 若m∥α,α⊥β,則m⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com