分析 通過向量表示出CD向量,然后求模即可得到結果.
解答 解:線段AB在平面α內,線段AC⊥α,線段BD⊥AB,線段DD′⊥α,∠DBD′=30°,AB=AC=BD=1,
由題意可知:$\overrightarrow{CD}$=$\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,
∴${\overrightarrow{CD}}^{2}$=$(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD})^{2}$=${\overrightarrow{CA}}^{2}+{\overrightarrow{AB}}^{2}+{\overrightarrow{BD}}^{2}$+$2\overrightarrow{CA}•\overrightarrow{AB}$+$2\overrightarrow{CA}•\overrightarrow{BD}$+$2\overrightarrow{AB}•\overrightarrow{BD}$
=12+12+12+2•12cos60°
=4.
∴所求C、D間的距離為:2.
故答案為2.
點評 本題考查空間向量求解兩點間距離的方法之一,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$ | B. | x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{6}$ | C. | x=$\frac{1}{3}$,y=$\frac{1}{6}$,z=$\frac{1}{3}$ | D. | x=$\frac{1}{6}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,+∞) | B. | (1,+∞) | C. | (-2,1) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x>0,總有(x+1)ex≤ | B. | ?x≤0,總有(x+1)ex≤1 | ||
C. | ?x0≤0,使得(x0+1)ex0≤1 | D. | ?x0>0,使得(x0+1)ex0≤1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com