如圖幾何體中,四邊形ABCD為矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2, EF∥AB,G為FC的中點(diǎn),M為線段CD上的一點(diǎn),且CM =2.
(1)證明:平面BGM⊥平面BFC;
(2)求三棱錐F-BMC的體積V.
詳見(jiàn)解析
解析試題分析:(1)連接,由已知可證,為的中點(diǎn),,所以可證,即面,可證面面垂直;
(2)根據(jù)公式,所以中點(diǎn)時(shí)求的面積,根據(jù)第一問(wèn)所證,可知,,代入面積公式與體積公式,即可求得體積,此題屬于中檔習(xí)題,屬于文科考察中點(diǎn).
試題解析:(1) 連接
,為的中點(diǎn)
,,,
,為矩形
,又,為平行四邊形
,為正三角形 ,
面,面,面面 6分
(2),
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/df/9/mk85o.png" style="vertical-align:middle;" />,,所以,所以 12分
考點(diǎn):1.面面垂直的判定;2.幾何體的體積計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
將邊長(zhǎng)為2,銳角為的菱形沿較短對(duì)角線折成二面角,點(diǎn)分別為的中點(diǎn),給出下列四個(gè)命題:
①;②是異面直線與的公垂線;③當(dāng)二面角是直二面角時(shí),與間的距離為;④垂直于截面.
其中正確的是 (將正確命題的序號(hào)全填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐中,,平面,為的中點(diǎn),,.
(Ⅰ)求四棱錐的體積;
(Ⅱ)若為的中點(diǎn),求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知一四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,且側(cè)棱PC⊥底面ABCD,且PC=2,E是側(cè)棱PC上的動(dòng)點(diǎn)
(1)求四棱錐P-ABCD的體積;
(2)證明:BD⊥AE。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱中-A BC中,AB AC, AB=AC=2,=4,點(diǎn)D是BC的中點(diǎn).
(1)求異面直線與所成角的余弦值;
(2)求平面與所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為8,側(cè)棱長(zhǎng)為6,D為AC中點(diǎn)。
(1)求證:直線AB1∥平面C1DB;
(2)求異面直線AB1與BC1所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖平面SAC⊥平面ACB,ΔSAC是邊長(zhǎng)為4的等邊三角形,ΔACB為直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱ABC-A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.
(1)證明:AC1⊥A1B;
(2)設(shè)直線AA1與平面BCC1B1的距離為,求二面角A1-AB-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。
(1)請(qǐng)?jiān)诰段CE上找到一點(diǎn)F,使得直線BF∥平面ACD,并證明;
(2)求平面BCE與平面ACD所成銳二面角的大小;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com