【題目】已知是定義在上的奇函數(shù),且,若,時(shí),有成立

1判斷上的單調(diào)性,并證明;

2解不等式:;

3對所有的恒成立,求實(shí)數(shù)的取值范圍

【答案】1上單調(diào)遞增,證明見解析;2;3

【解析】

試題分析:1由單調(diào)性和奇偶性的定義可得,可證上單調(diào)遞增;21,再由定義域解得的取值范圍;31可得 有最大值,不等式轉(zhuǎn)化為恒成立,令,分類討論:可得結(jié)論

試題解析: 1任取,且,則

為奇函數(shù),

由已知,又,

,即

上單調(diào)遞增

2上單調(diào)遞增

故原不等式的解集為

3,上單調(diào)遞增

上,,

問題轉(zhuǎn)化為,

恒成立,

設(shè),

,則,對恒成立,

,則的一次函數(shù),

恒成立,

必須,且,

綜上,實(shí)數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)將1,2,…,2n(n∈N* , n≥2)這2n個(gè)連續(xù)正整數(shù)分成A、B兩組,每組n個(gè)數(shù),A組最小數(shù)為a1 , 最大數(shù)為a2;B組最小數(shù)為b1 , 最大數(shù)為b2;記ξ=a2﹣a1 , η=b2﹣b1
(1)當(dāng)n=3時(shí),求ξ的分布列和數(shù)學(xué)期望;
(2)C表示事件“ξ與η的取值恰好相等”,求事件C發(fā)生的概率P(C);
(3)對(2)中的事件C, 表示C的對立事件,判斷P(C)和P( )的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,|an+1﹣an|=pn , n∈N*
(1)若{an}是遞增數(shù)列,且a1 , 2a2 , 3a3成等差數(shù)列,求p的值;
(2)若p= ,且{a2n1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由不等式組 確定的平面區(qū)域記為Ω1 , 不等式組 確定的平面區(qū)域記為Ω2 , 在Ω1中隨機(jī)取一點(diǎn),則該點(diǎn)恰好在Ω2內(nèi)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程;

(2)直線為參數(shù))與曲線交于兩點(diǎn),與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,是直角頂點(diǎn))來處理污水,管道越長,污水凈化效果越好.設(shè)計(jì)要求管道的接口的中點(diǎn),分別落在線段上.已知米,米,記

(1)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;

(2)若,求此時(shí)管道的長度;

(3)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:

對某城市一年(365天)的空氣質(zhì)量進(jìn)行監(jiān)測,獲得的API數(shù)據(jù)按照區(qū)間,,,進(jìn)行分組,得到頻率分布條形圖如圖.

(1)求圖中的值;

(2)空氣質(zhì)量狀況分別為輕微污染或輕度污染定為空氣質(zhì)量Ⅲ級,求一年中空氣質(zhì)量為Ⅲ級的天數(shù)

(3)小張到該城市出差一天,這天空氣質(zhì)量為優(yōu)良的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線上一個(gè)動(dòng)點(diǎn), 為圓上一個(gè)動(dòng)點(diǎn),那么點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線的準(zhǔn)線距離之和的最小值是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點(diǎn)分別是棱,的中點(diǎn),是側(cè)面內(nèi)一點(diǎn),若 平面,則線段長度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案