【題目】已知橢圓與直線都經(jīng)過點.直線平行,且與橢圓交于兩點,直線軸分別交于兩點.

(1)求橢圓的方程;

(2)證明: 為等腰三角形.

【答案】(1) ;(2)證明見解析.

【解析】試題分析:(1)將點M分別代入直線方程及橢圓方程,即可求得ab的值,求得橢圓方程;
(2)設直線m的方程,代入橢圓方程,利用韋達定理及直線的斜率公式求得kMA+kMB=0,即可求得MEF為等腰三角形.

試題解析:

(1)由直線都經(jīng)過點,則a=2b,將代入橢圓方程: ,解得:b2=4,a2=16,橢圓的方程為。

(2)設直線為:

聯(lián)立: ,得

于是

設直線的斜率為,要證為等腰三角形,只需

,

,

,

所以為等腰三角形.

點睛: 本題考查橢圓的標準方程,直線與橢圓的位置關系,考查韋達定理,直線的斜率公式,考查計算能力,證明三角形為等腰三角形轉化為證明斜率之和為0是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),有下列結論:

的定義域為(-1, 1); 的值域為(, );

的圖象關于原點成中心對稱; 在其定義域上是減函數(shù);

⑤對的定義城中任意都有.

其中正確的結論序號為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為圓上一動點,圓心關于軸的對稱點為,點分別是線段上的點,且.

(1)求點的軌跡方程;

(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)

若函數(shù)上單調性相反,求的解析式;

,不等式上恒成立,求a的取值范圍;

已知,若函數(shù)在區(qū)間內有且只有一個零點,試確定實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某學段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);…;第五組[17,18].按上述分組方法得到的頻率分布直方圖如右圖所示,已知圖中從左到右的前3個組的頻率之比為3:8:19,且第二組的頻數(shù)為8.
(1)將頻率當作概率,請估計該學段學生中百米成績在[16,17)內的人數(shù)以及所有抽取學生的百米成績的中位數(shù)(精確到0.01秒);
(2)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正四棱柱ABCD﹣A1B1C1D1中,AB= ,AA1=2,設四棱柱的外接球的球心為O,動點P在正方形ABCD的邊上,射線OP交球O的表面于點M,現(xiàn)點P從點A出發(fā),沿著A→B→C→D→A運動一次,則點M經(jīng)過的路徑長為(
A.
B.2 π
C.
D.4 π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】重慶一中為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的賽,兩隊各由4名選手組成,每局兩隊各派一名選手,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽隊選手獲勝的概率均為,且各局比賽結果相互獨立,比賽結束時隊的得分高于隊的得分的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若 且sinC=cosA (Ⅰ)求角A、B、C的大;
(Ⅱ)函數(shù)f(x)=sin(2x+A)+cos(2x﹣ ),求函數(shù)f(x)單調遞增區(qū)間,指出它相鄰兩對稱軸間的距離.

查看答案和解析>>

同步練習冊答案