【題目】已知點(diǎn)A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn).
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過點(diǎn)A的直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求l的方程.
【答案】解:(Ⅰ) 設(shè)F(c,0),由條件知 ,得 又 ,
所以a=2,b2=a2﹣c2=1,故E的方程 .
(Ⅱ)依題意當(dāng)l⊥x軸不合題意,故設(shè)直線l:y=kx﹣2,設(shè)P(x1 , y1),Q(x2 , y2)
將y=kx﹣2代入 ,得(1+4k2)x2﹣16kx+12=0,
當(dāng)△=16(4k2﹣3)>0,即 時(shí),
從而
又點(diǎn)O到直線PQ的距離 ,所以△OPQ的面積 = ,
設(shè) ,則t>0, ,
當(dāng)且僅當(dāng)t=2,k=± 等號成立,且滿足△>0,
所以當(dāng)△OPQ的面積最大時(shí),l的方程為:y= x﹣2或y=﹣ x﹣2
【解析】(Ⅰ)通過離心率得到a、c關(guān)系,通過A求出a,即可求E的方程;(Ⅱ)設(shè)直線l:y=kx﹣2,設(shè)P(x1 , y1),Q(x2 , y2)將y=kx﹣2代入 ,利用△>0,求出k的范圍,利用弦長公式求出|PQ|,然后求出△OPQ的面積表達(dá)式,利用換元法以及基本不等式求出最值,然后求解直線方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形, 平面, , 分別是的中點(diǎn).
(Ⅰ)證明: ;
(Ⅱ)若為上的動點(diǎn), 與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于被墨水污染,一道數(shù)學(xué)題僅能見到如下文字:“已知二次函數(shù)的圖像經(jīng)過,,求證:這個(gè)二次函數(shù)的圖像關(guān)于直線對稱”,根據(jù)已知消息,題中二次函數(shù)圖像不具有的性質(zhì)是( ).
A. 在軸上的截線段長是 B. 與軸交于點(diǎn)
C. 頂點(diǎn) D. 過點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若,則稱為的“不動點(diǎn)”;若,則稱為的“穩(wěn)定點(diǎn)”.函數(shù)的“不動點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為和,即,.
()設(shè)函數(shù),求集合和.
()求證:.
()設(shè)函數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)公益廣告說:“若不注意節(jié)約用水,那么若干年后,最有一滴水只能是我們的眼淚。”我國是水資源匱乏的國家。為鼓勵節(jié)約用水,某市打算出臺一項(xiàng)水費(fèi)政策措施,規(guī)定:每一季度每人用水量不超過5噸時(shí),每噸水費(fèi)收基本價(jià)1.3元;若超過5噸而不超過6噸時(shí),超過部分的水費(fèi)加收200%;若超過6噸而不超過7噸時(shí),超過部分的水費(fèi)加收400%。設(shè)某人本季度實(shí)際用水量為噸,應(yīng)交水費(fèi)為f(x),(1)求的值;(2)試求出函數(shù)f(x)的解析式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,直線.
(1)若拋物線和直線沒有公共點(diǎn),求的取值范圍;
(2)若,且拋物線和直線只有一個(gè)公共點(diǎn)時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為是上一點(diǎn).
(1)求橢圓的方程;
(2)設(shè)是分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對稱點(diǎn),平行于的直線交于異于的兩點(diǎn).點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為.證明:直線與軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為, , ().
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱中,,,,.
(1)證明: 平面;
(2)若是棱的中點(diǎn),在棱上是否存在一點(diǎn),使DE∥平面?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com