若α,β是兩個(gè)不同的平面,下列四個(gè)條件:
①存在一條直線a,a⊥α,a⊥β;
②存在一個(gè)平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線a,b,a⊂α,b⊂β,a∥β,b∥α;
④存在兩條異面直線a,b,a⊂α,b⊂β,a∥β,b∥α.
那么可以是α∥β的充分條件有( C。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖14,在棱長(zhǎng)為2的正方體ABCDA1B1C1D1中,E,F,M,N分別是棱AB,AD,A1B1,A1D1的中點(diǎn),點(diǎn)P,Q分別在棱DD1,BB1上移動(dòng),且DP=BQ=λ(0<λ<2).
(1)當(dāng)λ=1時(shí),證明:直線BC1∥平面EFPQ.
(2)是否存在λ,使面EFPQ與面PQMN所成的二面角為直二面角?若存在,求出λ的值;若不存在,說(shuō)明理由.
圖14
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
投擲兩顆骰子,得到其向上的點(diǎn)數(shù)分別為m和n,則復(fù)數(shù)(m+ni)(n-mi)為實(shí)數(shù)的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知隨機(jī)變量ξ只能取三個(gè)值:x1,x2,x3,其概率依次成等差數(shù)列,則公差d的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)均勻的正四面體的四個(gè)面上分別標(biāo)有1,2,3,4四個(gè)數(shù)字,現(xiàn)隨機(jī)投擲兩次,正四面體面朝下的數(shù)字分別為x1,x2,記ξ=(x1-3)2+(x2-3)2.
(1)分別求出ξ取得最大值和最小值時(shí)的概率.
(2)求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
過(guò)橢圓上一點(diǎn)H作圓x2+y2=2的兩條切線,點(diǎn)A,B為切點(diǎn),過(guò)A,B的直線l與x軸,y軸分布交于點(diǎn)P,Q兩點(diǎn),則△POQ面積的最小值為( 。
A. B. C. 1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示的幾何體中,四邊形ABCD為矩形,AD⊥平面,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE∥平面BFD;
(2)求三棱錐C﹣BGF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=且滿足f(c2)=,其中0<c<1.
(1)求常數(shù)c的值;
(2)解不等式f(x)>+1.
難點(diǎn)突破
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com