【題目】某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標價的出售,當顧客在商場內(nèi)消費一定金額后,按如下方案獲得相應(yīng)金額的獎券:

消費金額(元)的范圍

獲得獎券的金額(元)

30

60

100

130

根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠,例如:購買標價為400元的商品,則消費金額為320元,獲得的優(yōu)惠額為:元,設(shè)購買商品得到的優(yōu)惠率=(購買商品獲得的優(yōu)惠額)/(商品標價),試問:

1)若購買一件標價為1000元的商品,顧客得到的優(yōu)惠率是多少?

2)對于標價在(元)內(nèi)的商品,顧客購買標價為多少元的商品,可得到不小于的優(yōu)惠率?

【答案】1;(2.

【解析】

本題考查的是不等式的應(yīng)用問題.在解答時:

1)直接根據(jù)購買商品得到的優(yōu)惠率,即可獲得問題的解答;

2)由于標價在,(元內(nèi)的商品,其消費金額滿足:,所以要結(jié)合消費金額(元的范圍進行討論,然后解不等式組即可獲得問題的解答.

1)由題意可知:

故購買一件標價為1000元的商品,顧客得到的優(yōu)惠率是

2)設(shè)商品的標價為元.

,消費額:

由已知得(Ⅰ)或 (Ⅱ)

不等式組(Ⅰ)無解,不等式組(Ⅱ)的解為

因此,當顧客購買標價在,元內(nèi)的商品時,

可得到不小于的優(yōu)惠率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在各棱長均為2的正三棱柱中, 分別為棱的中點, 為線段上的動點,其中, 更靠近,且.

(1)證明: 平面

(2)若與平面所成角的正弦值為,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以三角形邊,,為邊向形外作正三角形,,,則,三線共點,該點稱為的正等角中心.當的每個內(nèi)角都小于120時,正等角中心點P滿足以下性質(zhì):

1;(2)正等角中心是到該三角形三個頂點距離之和最小的點(也即費馬點).由以上性質(zhì)得的最小值為_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是.以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標方程化為直角坐標方程;

(Ⅱ)若直線與曲線相交于兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是直線上一動點,PA、PB是圓的兩條切線,A、B為切點,若四邊形PACB面積的最小值是2,則的值是

A. B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當)的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達式;討論的單調(diào)性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線焦點的直線與拋物線交于,兩點,與圓交于,兩點,若有三條直線滿足,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義在R上的偶函數(shù),且當x≥0時,fx)=x22x

1)求f0)及ff1))的值;

2)求函數(shù)fx)的解析式;

3)若關(guān)于x的方程fx)﹣m0有四個不同的實數(shù)解,求實數(shù)m的取值范圍,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時底面的一條棱始終在桌面上(圖、均為容器的縱截面).

1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?

2)現(xiàn)需要倒出不少于的溶液,當時,能實現(xiàn)要求嗎?請說明理由.

查看答案和解析>>

同步練習冊答案