【題目】已知曲線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)若直線與曲線相交于,兩點(diǎn),且,求直線的傾斜角的值.

【答案】(1);(2)

【解析】

(1)利用三種方程的轉(zhuǎn)化方法,將曲線C的極坐標(biāo)方程和直線l的參數(shù)方程轉(zhuǎn)化為普通方程;

(2)先將直l的參數(shù)方程是(t是參數(shù))化成普通方程,再求出弦心距,利用勾股定理求出弦長,也可以直接利用直線的參數(shù)方程和圓的普通方程聯(lián)解,求出對應(yīng)的參數(shù)t1,t2的關(guān)系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范圍.

(1)由ρ=4cos θ,得ρ2=4ρcos θ.因?yàn)閤2+y2=ρ2,x=ρcos θ,所以x2+y2=4x,

即曲線C的直角坐標(biāo)方程為(x-2)2+y2=4.

(2)將 代入圓的方程(x-2)2+y2=4,得(tcos α-1)2+(tsin α)2=4,

化簡得t2-2tcos α-3=0.設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2,由根與系數(shù)的關(guān)系,得所以|AB|=|t1-t2|=,

故4cos2α=1,解得cos α=±.因?yàn)橹本的傾斜角α∈[0,π),所以α=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯誤的是(

A.先把高二年級的2000名學(xué)生編號:12000,再從編號為150的學(xué)生中隨機(jī)抽取1名學(xué)生,其編號為,然后抽取編號為,,……的學(xué)生,這種抽樣方法是系統(tǒng)抽樣法.

B.一組數(shù)據(jù)的方差為,平均數(shù)為,將這組數(shù)據(jù)的每一個數(shù)都乘以2,所得的一組新數(shù)據(jù)的方差和平均數(shù)為.

C.若兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1.

D.若一組數(shù)據(jù)1,3的平均數(shù)是2,則該組數(shù)據(jù)的方差是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足b1=1,b2=2,且anbnbnnbn1.

(1)求數(shù)列,的通項(xiàng)公式;

(2)設(shè)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式

對一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線

1)求證:無論取何值,直線始終經(jīng)過第一象限;

2)若直線軸正半軸交于點(diǎn),與軸正半軸交于點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓內(nèi)接四邊形ABCD的邊

Ⅰ)求角C的大小和BD的長;

Ⅱ)求四邊形ABCD的面積及外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標(biāo)價的出售,當(dāng)顧客在商場內(nèi)消費(fèi)一定金額后,按如下方案獲得相應(yīng)金額的獎券:

消費(fèi)金額(元)的范圍

獲得獎券的金額(元)

30

60

100

130

根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠,例如:購買標(biāo)價為400元的商品,則消費(fèi)金額為320元,獲得的優(yōu)惠額為:元,設(shè)購買商品得到的優(yōu)惠率=(購買商品獲得的優(yōu)惠額)/(商品標(biāo)價),試問:

1)若購買一件標(biāo)價為1000元的商品,顧客得到的優(yōu)惠率是多少?

2)對于標(biāo)價在(元)內(nèi)的商品,顧客購買標(biāo)價為多少元的商品,可得到不小于的優(yōu)惠率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且當(dāng)時,的最小值為2

1)求的值,并求的單調(diào)遞增區(qū)間.

2)若將函數(shù)的圖象上的點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的,再將所得的圖象向右平移個單位長度,得到函數(shù)的圖象,求方程在區(qū)間上所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的奇函數(shù).

(1)求的值;

(2)證明上單調(diào)遞減;

(3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案