【題目】已知直線.
(1)求證:無論取何值,直線始終經(jīng)過第一象限;
(2)若直線與軸正半軸交于點(diǎn),與軸正半軸交于點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時(shí)直線的方程.
【答案】(1)證明見解析; (2)面積的最小值為4,直線的方程為.
【解析】
(1)先將直線方程化成點(diǎn)斜式,求得、的值,可得定點(diǎn)坐標(biāo),再根據(jù)定點(diǎn)在第一象限,可得直線始終經(jīng)過第一象限;
(2)法一:先求得、的坐標(biāo),可得的面積為表達(dá)式,再利用基本不等式,求得的最小值及此時(shí)的值,進(jìn)而得到此時(shí)直線的方程.
法二:設(shè)直線的方程為,則,直線過定點(diǎn),所以,利用基本不等式求得,則可得的最小值及此時(shí)的的值,進(jìn)而得到此時(shí)直線的方程.
(1)因?yàn)橹本,即,令,求得,,
即直線過定點(diǎn)且在第一象限,
所以無論取何值,直線始終經(jīng)過第一象限.
(2)方法一:因?yàn)橹本與軸,軸正半軸分別交于,兩點(diǎn),所以,
令,解得;令,得,
即,,
∴,
∵,∴,
則,
當(dāng)且僅當(dāng),也即時(shí),取得等號(hào),
則,
∴,從而的最小值為4,
此時(shí)直線的方程為,即.
方法二:因?yàn)橹本與軸,軸正半軸分別交于,兩點(diǎn),設(shè),,
設(shè)直線的方程為,則,
又直線過定點(diǎn),所以,
又因?yàn)?/span>,,所以,
即:,所以,
∴,即的最小值為4,
此時(shí),解得,,
所以直線的方程為,即:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民對(duì)政府出臺(tái)樓市限購(gòu)令的態(tài)度,在該市隨機(jī)抽取了50名市民進(jìn)行調(diào)查,他們?cè)率杖耄▎挝唬喊僭┑念l數(shù)分布及對(duì)樓市限購(gòu)令的贊成人數(shù)如下表:
月收入 | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 8 | 5 | 2 | 1 |
將月收入不低于55百元的人群稱為“高收入族”,月收入低于55百元的人群稱為“非高收入族”.
附:
0.100 | 0.050 | 0.010 | 0.001 /td> | |
2.706 | 3.841 | 6.635 | 10.828 |
非高收入族 | 高收入族 | 總計(jì) | |
贊成 | |||
不贊成 | |||
總計(jì) |
(1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷有多大的把握認(rèn)為贊不贊成樓市限購(gòu)令與收入高低有關(guān)?
(2)現(xiàn)從月收入在的人群中隨機(jī)抽取兩人,求所抽取的兩人中至少有一人贊成樓市限購(gòu)令的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四組函數(shù)中,表示同一函數(shù)的是
A.f(x)=,g(x)=x2–1B.f(x)=,g(x)=x+1
C.f(x)=,g(x)=()2D.f(x)=|x|,g(t)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以三角形邊,,為邊向形外作正三角形,,,則,,三線共點(diǎn),該點(diǎn)稱為的正等角中心.當(dāng)的每個(gè)內(nèi)角都小于120時(shí),正等角中心點(diǎn)P滿足以下性質(zhì):
(1);(2)正等角中心是到該三角形三個(gè)頂點(diǎn)距離之和最小的點(diǎn)(也即費(fèi)馬點(diǎn)).由以上性質(zhì)得的最小值為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)民族文化,某學(xué)校學(xué)生全員參與舉行了“我愛國(guó)學(xué),傳誦經(jīng)典”考試,并從中抽取名學(xué)生的成績(jī)(百分制)作為樣本,得到頻率分布直方圖如圖所示.成績(jī)落在中的人數(shù)為20.
(1)求和的值;
(2)根據(jù)樣本估計(jì)總體的思想,估計(jì)該校學(xué)生數(shù)學(xué)成績(jī)的平均數(shù)和中位數(shù);(同一組數(shù)據(jù)中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
(3)若成績(jī)?cè)?/span>80分以上(含80分)為“國(guó)學(xué)小達(dá)人”.若在樣本中,利用分層抽樣的方法從“國(guó)學(xué)小達(dá)人”中隨機(jī)抽取5人,再?gòu)闹谐槿?/span>2人贈(zèng)送一套國(guó)學(xué)經(jīng)典,記“抽中的2名學(xué)生成績(jī)都不低于90分”為事件,求;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于,兩點(diǎn),且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)中()的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面,,為的中點(diǎn),為的中點(diǎn),點(diǎn)在線段上,,.
(Ⅰ)求證:平面;
(Ⅱ)若,求證:平面;
(Ⅲ)求與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com