2.7063.8416.63510.828非高收入族高收入族總計贊成不贊成總計(1)根據(jù)已知條件完成下面的列聯(lián)表.并判斷有多大的把握認為贊不贊成樓市限購令與收入高低有關?(2)現(xiàn)從月收入在的人群中隨機抽取兩人.求所抽取的兩人中至少有一人贊成樓市限購令的概率.">

【題目】為了解某市市民對政府出臺樓市限購令的態(tài)度,在該市隨機抽取了50名市民進行調(diào)查,他們月收入(單位:百元)的頻數(shù)分布及對樓市限購令的贊成人數(shù)如下表:

月收入

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

8

5

2

1

將月收入不低于55百元的人群稱為“高收入族”,月收入低于55百元的人群稱為“非高收入族”.

附:

0.100

0.050

0.010

0.001

/td>

2.706

3.841

6.635

10.828

非高收入族

高收入族

總計

贊成

不贊成

總計

1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷有多大的把握認為贊不贊成樓市限購令與收入高低有關?

2)現(xiàn)從月收入在的人群中隨機抽取兩人,求所抽取的兩人中至少有一人贊成樓市限購令的概率.

【答案】1)列聯(lián)表見解析,90%;(2.

【解析】

1)根據(jù)題意填寫列聯(lián)表,計算觀測值,對照臨界值即可得出結(jié)論;

2)利用列舉法計算基本事件數(shù),求出對應的概率值.

1)根據(jù)題意填寫列聯(lián)表如下;

非高收入族

高收入族

總計

贊成

25

3

28

不贊成

15

7

22

總計

40

10

50

計算,

所以有的把握認為贊不贊成樓市限購令與收入高低有關;

2)設月收入在,5人的編號為,,,其中為贊成樓市限購令的人,

5人中抽取兩人的方法數(shù)有,,,,,,,10種,

其中,,,,為所抽取的兩人中至少有一人贊成的方法數(shù),

因此所求概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為2的正方體中, , , 分別是棱, , 的中點,點 分別在棱, 上移動,且.

(1)當時,證明:直線平面

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義域為R的奇函數(shù).

k值;

,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)有“飄移點”

試判斷函數(shù)及函數(shù)是否有“飄移點”并說明理由;

若函數(shù)有“飄移點”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先閱讀下列不等式的證法,再解決后面的問題:

已知,求證:.

證明:構(gòu)造函數(shù)

.

因為對一切,恒有,

所以,從而得.

1)若,,請寫出上述結(jié)論的推廣式;

2)參考上述證法,對你推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,且保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和費率浮動比率表

浮動因素

浮動比率

A1

上一個年度未發(fā)生有責任道路交通事故

下浮10%

A2

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

A3

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

A4

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

A5

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

A6

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是(

A.先把高二年級的2000名學生編號:12000,再從編號為150的學生中隨機抽取1名學生,其編號為,然后抽取編號為,,……的學生,這種抽樣方法是系統(tǒng)抽樣法.

B.一組數(shù)據(jù)的方差為,平均數(shù)為,將這組數(shù)據(jù)的每一個數(shù)都乘以2,所得的一組新數(shù)據(jù)的方差和平均數(shù)為,.

C.若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于1.

D.若一組數(shù)據(jù)1,,3的平均數(shù)是2,則該組數(shù)據(jù)的方差是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐,底面,,,上一點,且.

(1)求證:平面;

(2),,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線

1)求證:無論取何值,直線始終經(jīng)過第一象限;

2)若直線軸正半軸交于點,與軸正半軸交于點,為坐標原點,設的面積為,求的最小值及此時直線的方程.

查看答案和解析>>

同步練習冊答案