【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷(xiāo)售商訂購(gòu),規(guī)定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠單價(jià)就降低元,根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)不會(huì)超過(guò)600.

1設(shè)一次訂購(gòu)件,服裝的實(shí)際出廠單價(jià)為元,寫(xiě)出函數(shù)的表達(dá)式;

2當(dāng)銷(xiāo)售商一次訂購(gòu)多少件服裝時(shí),該廠獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?

【答案】1

2)當(dāng)一次訂購(gòu)550件服裝時(shí),該廠獲得的利潤(rùn)最大,最大利潤(rùn)為6050

【解析】試題分析:(1)由題意單價(jià)P是關(guān)于x的分段函數(shù)。(2)先寫(xiě)出利潤(rùn)關(guān)于訂購(gòu)量x的分段函數(shù)再計(jì)算x=450時(shí)的利潤(rùn).

試題解析:(1)當(dāng)0<x≤100時(shí),P60;

當(dāng)100<x≤500時(shí),P600.02x100)=62.

所以P

2)設(shè)銷(xiāo)售商一次訂購(gòu)量為x件,工廠獲得的利潤(rùn)為L元,則有

L=(P40x

當(dāng)x450時(shí),L5850.

因此,當(dāng)銷(xiāo)售商一次訂購(gòu)450件服裝時(shí),該服裝廠獲得的利潤(rùn)是5850元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的圓心在直線(xiàn)上,且圓經(jīng)過(guò)點(diǎn)與點(diǎn).

(1)求圓的方程;

(2)過(guò)點(diǎn)作圓的切線(xiàn),求切線(xiàn)所在的直線(xiàn)的方程.

【答案】(1);(2).

【解析】試題分析:(1)求出線(xiàn)段的中點(diǎn),進(jìn)而得到線(xiàn)段的垂直平分線(xiàn)為,與聯(lián)立得交點(diǎn),∴.則圓的方程可求

(2)當(dāng)切線(xiàn)斜率不存在時(shí),可知切線(xiàn)方程為.

當(dāng)切線(xiàn)斜率存在時(shí),設(shè)切線(xiàn)方程為,由到此直線(xiàn)的距離為,解得,即可到切線(xiàn)所在直線(xiàn)的方程.

試題解析:((1)設(shè) 線(xiàn)段的中點(diǎn)為,∵,

∴線(xiàn)段的垂直平分線(xiàn)為,與聯(lián)立得交點(diǎn),

.

∴圓的方程為.

(2)當(dāng)切線(xiàn)斜率不存在時(shí),切線(xiàn)方程為.

當(dāng)切線(xiàn)斜率存在時(shí),設(shè)切線(xiàn)方程為,即,

到此直線(xiàn)的距離為,解得,∴切線(xiàn)方程為.

故滿(mǎn)足條件的切線(xiàn)方程為.

【點(diǎn)睛本題考查圓的方程的求法,圓的切線(xiàn),中點(diǎn)弦等問(wèn)題,解題的關(guān)鍵是利用圓的特性,利用點(diǎn)到直線(xiàn)的距離公式求解.

型】解答
結(jié)束】
20

【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本(單位:萬(wàn)元)與產(chǎn)品銷(xiāo)售收入(單位:萬(wàn)元)存在較好的線(xiàn)性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).

(投入成本)

7

10

11

15

17

(銷(xiāo)售收入)

19

22

25

30

34

1)求關(guān)于的線(xiàn)性回歸方程

2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬(wàn)元的毛利率更大還是投入成本24萬(wàn)元的毛利率更大()?

相關(guān)公式 , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)男女學(xué)生是否喜愛(ài)古典音樂(lè)進(jìn)行了一個(gè)調(diào)查,調(diào)查者對(duì)學(xué)校高三年級(jí)隨機(jī)抽取了100名學(xué)生,調(diào)查結(jié)果如表:

喜愛(ài)

不喜愛(ài)

總計(jì)

男學(xué)生

60

80

女學(xué)生

總計(jì)

70

30

附:K2=

P(K2≥k0

0.100

0.050

0.010

k0

2.706

3.841

6.635


(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂(lè)的程度有差異”;
(2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取10名學(xué)生,再?gòu)倪@10名學(xué)生中隨機(jī)抽取5名學(xué)生去某古典音樂(lè)會(huì)的現(xiàn)場(chǎng)觀看演出,求正好有X個(gè)男生去觀看演出的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),短軸長(zhǎng)為,點(diǎn)在橢圓上.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若斜率為的直線(xiàn)與橢圓交于, 兩點(diǎn), 為弦中點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)在某一學(xué)校隨機(jī)抽取30名學(xué)生參加環(huán)保知識(shí)測(cè)試,測(cè)試成績(jī)(單位:分)如圖所示,假設(shè)得分值的中位數(shù)為me , 眾數(shù)為m0 , 平均值為 ,則(

A.me=m0=
B.me=m0
C.me<m0
D.m0<me

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信支付誕生于微信紅包,早期知識(shí)作為社交的一部分“發(fā)紅包”而誕生的,在發(fā)紅包之余才發(fā)現(xiàn),原來(lái)微信支付不僅可以用來(lái)發(fā)紅包,還可以用來(lái)支付,現(xiàn)在微信支付被越來(lái)越多的人們所接受,現(xiàn)從某市市民中隨機(jī)抽取300為對(duì)是否使用微信支付進(jìn)行調(diào)查,得到下列的列聯(lián)表:

年輕人

非年輕人

總計(jì)

經(jīng)常使用微信支付

165

225

不常使用微信支付

合計(jì)

90

300

根據(jù)表中數(shù)據(jù),我們得到的統(tǒng)計(jì)學(xué)的結(jié)論是:由__________的把握認(rèn)為“使用微信支付與年齡有關(guān)”。

其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類(lèi)產(chǎn)品的收益與投資額成正比,投資類(lèi)產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬(wàn)元時(shí)兩類(lèi)產(chǎn)品的收益分別為0125萬(wàn)元和05萬(wàn)元

1分別寫(xiě)出兩類(lèi)產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬(wàn)元資金全部用于理財(cái)投資,問(wèn):怎么分配資金能使投資獲得最大收益其最大收益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)奇函數(shù)上是增函數(shù),且,則不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案