【題目】已知圓的圓心在直線上,且圓經(jīng)過(guò)點(diǎn)與點(diǎn).
(1)求圓的方程;
(2)過(guò)點(diǎn)作圓的切線,求切線所在的直線的方程.
【答案】(1);(2)或.
【解析】試題分析:(1)求出線段的中點(diǎn),進(jìn)而得到線段的垂直平分線為,與聯(lián)立得交點(diǎn),∴.則圓的方程可求
(2)當(dāng)切線斜率不存在時(shí),可知切線方程為.
當(dāng)切線斜率存在時(shí),設(shè)切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.
試題解析:((1)設(shè) 線段的中點(diǎn)為,∵,
∴線段的垂直平分線為,與聯(lián)立得交點(diǎn),
∴.
∴圓的方程為.
(2)當(dāng)切線斜率不存在時(shí),切線方程為.
當(dāng)切線斜率存在時(shí),設(shè)切線方程為,即,
則到此直線的距離為,解得,∴切線方程為.
故滿足條件的切線方程為或.
【點(diǎn)睛】本題考查圓的方程的求法,圓的切線,中點(diǎn)弦等問(wèn)題,解題的關(guān)鍵是利用圓的特性,利用點(diǎn)到直線的距離公式求解.
【題型】解答題
【結(jié)束】
20
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本(單位:萬(wàn)元)與產(chǎn)品銷售收入(單位:萬(wàn)元)存在較好的線性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).
(投入成本) | 7 | 10 | 11 | 15 | 17 |
(銷售收入) | 19 | 22 | 25 | 30 | 34 |
(1)求關(guān)于的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬(wàn)元的毛利率更大還是投入成本24萬(wàn)元的毛利率更大()?
相關(guān)公式: , .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2019·朝鮮中學(xué)]在如圖所示的程序框圖中,有這樣一個(gè)執(zhí)行框,其中的函數(shù)關(guān)系式為,程序框圖中的為函數(shù)的定義域.
(1)若輸入,請(qǐng)寫出輸出的所有的值;
(2)若輸出的所有都相等,試求輸入的初始值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為, ,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)的頂點(diǎn)都在橢圓上,其中關(guān)于原點(diǎn)對(duì)稱,試問(wèn)能否為正三角形?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的經(jīng)過(guò)中心的弦稱為橢圓的一條直徑,平行于該直徑的所有弦的中點(diǎn)的軌跡為一條線段,稱為該直徑的共軛直徑,已知橢圓的方程為.
(1)若一條直徑的斜率為,求該直徑的共軛直徑所在的直線方程;
(2)若橢圓的兩條共軛直徑為和,它們的斜率分別為,證明:四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海捎梅侄斡?jì)費(fèi)的方法計(jì)算電費(fèi)每月用電不超過(guò)100度仍按原標(biāo)準(zhǔn)收費(fèi),超過(guò)的部分每度按0.5元計(jì)算.
Ⅰ.設(shè)月用電x度時(shí),應(yīng)交電費(fèi)y元,寫出y關(guān)于x的函數(shù)關(guān)系式;
Ⅱ.小明家第一季度繳納電費(fèi)情況如下:
月份 | 一月 | 二月 | 三月 | 合計(jì) |
繳費(fèi)金額 | 76元 | 63元 | 45.6元 | 184.6元 |
問(wèn)小明家第一季度共用多少度?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中, 為正三角形,平面底面,底面為梯形, , , , , ,點(diǎn)在棱上,且.
求證:(1)平面平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)定義域?yàn)?/span>,若對(duì)于任意的,都有,且時(shí),有.
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)設(shè),若,對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C經(jīng)過(guò)點(diǎn)A(1,3) ,B(4,2),且圓心在直線l:x-y-1=0上.
(1)求圓C的方程;
(2)設(shè)P是圓D:x2+y2+8x-2y+16=0上任意一點(diǎn),過(guò)點(diǎn)P作圓C的兩條切線PM,PN,M,N為切點(diǎn),試求四邊形PMCN面積S的最小值及對(duì)應(yīng)的點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購(gòu),規(guī)定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠單價(jià)就降低元,根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購(gòu)不會(huì)超過(guò)600件.
(1)設(shè)一次訂購(gòu)件,服裝的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;
(2)當(dāng)銷售商一次訂購(gòu)多少件服裝時(shí),該廠獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com