分析 橢圓x2+4y2=64即$\frac{{x}^{2}}{64}+\frac{{y}^{2}}{16}$=1,可得c=4$\sqrt{3}$.設(shè)雙曲線的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,(a,b>0),則c=4$\sqrt{3}$,c2=a2+b2,2a=1,聯(lián)立解出即可得出.
解答 解:橢圓x2+4y2=64即$\frac{{x}^{2}}{64}+\frac{{y}^{2}}{16}$=1,可得c=$\sqrt{64-16}$=4$\sqrt{3}$.
設(shè)雙曲線的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,(a,b>0),
則c=4$\sqrt{3}$,c2=a2+b2,2a=1,
解得a=$\frac{1}{2}$,b2=$\frac{191}{4}$.
∴要求的雙曲線的標(biāo)準(zhǔn)方程為:4x2-$\frac{4{y}^{2}}{191}$=1.
點(diǎn)評(píng) 本題考查了橢圓與雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若am2<bm2,則a<b”的逆命題是真命題 | |
B. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 | |
C. | 命題“p或q”為真命題,則命題“p”和命題“q”均為真命題 | |
D. | 若p∧q為假命題,則p、q均為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\sqrt{6}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com