【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點,ACBC,且AC=BC.
(1)求證:AM平面EBC;
(2)求直線AB與平面EBC所成角的大小,
(3)求二面角A-BE-C的大小.
【答案】(1)見解析(2)30°(3)60°
【解析】
(1)以點A為原點,以過A點平行于BC的直線為x軸,分別以直線AC和AE為y軸和z軸,建立空間直角坐標(biāo)系A(chǔ)-xyz,利用向量法能證明平面(2)求出平面EBC的法向量,利用線面角公式求解(3)求平面EAB的法向量,根據(jù)向量法求出二面角A-BE-C的大小.
(1)如圖所示:
建立空間直角坐標(biāo)系A(chǔ)-xy,設(shè),
則
所以
∴,,∴,.
∴平面.
(2)∵平面,∴為平面的一個法向量,
∵,∴,∴,
∴直線與平面所成的角的大小為30°.
(3)面的法向量為,面的法向量為,
∴
故二面角的大小為60°
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x2﹣4|+a|x﹣2|,x∈[﹣3,3].若f(x)的最大值是0,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對城市治安狀況的滿意度,某部門對城市部分居民的“安全感”進行調(diào)查,在調(diào)查過程中讓每個居民客觀地對自己目前生活城市的安全感進行評分,并把所得分作為“安全感指數(shù)”,即用區(qū)間[0,100]內(nèi)的一個數(shù)來表示,該數(shù)越接近100表示安全感越高.現(xiàn)隨機對該地區(qū)的男、女居民各500人進行了調(diào)查,調(diào)查數(shù)據(jù)如表所示:
安全感指數(shù) | [0,20) | [20,40) | [40,60) | [60,80) | [80,100] |
男居民人數(shù) | 8 | 16 | 226 | 131 | 119 |
女居民人數(shù) | 12 | 14 | 174 | 122 | 178 |
根據(jù)表格,解答下面的問題:
(Ⅰ)估算該地區(qū)居民安全感指數(shù)的平均值;
(Ⅱ)如果居民安全感指數(shù)不小于60,則認為其安全感好.為了進一步了解居民的安全感,調(diào)查組又在該地區(qū)隨機抽取3對夫妻進行調(diào)查,用X表示他們之中安全感好的夫妻(夫妻二人都感到安全)的對數(shù),求X的分布列及期望(以樣本的頻率作為總體的概率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+x﹣lnx,(a>0). (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)f(x)極值點為x0 , 若存在x1 , x2∈(0,+∞),且x1≠x2 , 使f(x1)=f(x2),求證:x1+x2>2x0 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其左、右焦點分別為,點是坐標(biāo)平面內(nèi)一點,且, (為坐標(biāo)原點).
(1)求橢圓的方程;
(2)過點且斜率為的動直線交橢圓于兩點,在軸上是否存在定點,使以為直徑的圓恒過該點?若存在,求出點的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】神舟五號飛船成功完成了第一次載人航天飛行,實現(xiàn)了中國人民的航天夢想,某段時間飛船在太空中運行的軌道是一個橢圓,地球在橢圓的一個焦點上,如圖所示,假設(shè)航天員到地球最近距離為d1 , 到地球最遠距離為d2 , 地球的半徑為R,我們想象存在一個鏡像地球,其中心在神舟飛船運行軌道的另外一個焦點上,上面住著一個神仙發(fā)射某種神秘信號需要飛行中的航天員中轉(zhuǎn)后地球人才能接收到,則神秘信號傳導(dǎo)的最短距離為( )
A.d1+d2+R
B.d2﹣d1+2R
C.d2+d1﹣2R
D.d1+d2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|3x﹣1|﹣2|x|+2.
(1)解不等式:f(x)<10;
(2)若對任意的實數(shù)x,f(x)﹣|x|≤a恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)﹣1(ω>0,|φ|<π)的一個零點是 , 是y=f(x)的圖象的一條對稱軸,則ω取最小值時,f(x)的單調(diào)增區(qū)間是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com