【題目】已知函數(shù)f(x)=|x2﹣4|+a|x﹣2|,x∈[﹣3,3].若f(x)的最大值是0,則實(shí)數(shù)a的取值范圍是

【答案】(﹣∞,﹣5]
【解析】解:f(x)=|x2﹣4|+a|x﹣2|=|x﹣2|(|x+2|+a)≤0,
當(dāng)x=2時(shí),f(x)=0恒成立,
當(dāng)x≠2時(shí),
∴|x+2|+a≤0,
∴a≤﹣|x+2|,
設(shè)y=﹣|x+2|,x∈[﹣3,3].則其圖象為:

由圖象可知ymin=﹣5,
a≤﹣5,
故實(shí)數(shù)a的取值范圍是(﹣∞,﹣5],
所以答案是:(﹣∞,﹣5]
【考點(diǎn)精析】本題主要考查了函數(shù)的最值及其幾何意義的相關(guān)知識(shí)點(diǎn),需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍苷_解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列,
(1)若an>0,且a2a4+2a3a5a4a6=25,求a3a5.
(2)a1+a2+a3=7,a1a2a3=8,求an.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列各函數(shù)中,最小值等于2的函數(shù)是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,ABC是以BC為斜邊的等腰直角三角形,BCD是邊長(zhǎng)為2的正三角形.

(Ⅰ)當(dāng)AD為多長(zhǎng)時(shí),?

(Ⅱ)當(dāng)二面角BACD時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)進(jìn)行自主招生時(shí),需要進(jìn)行邏輯思維和閱讀表達(dá)兩項(xiàng)能力的測(cè)試.學(xué)校對(duì)參加測(cè)試的200名學(xué)生的邏輯思維成績(jī)、閱讀表達(dá)成績(jī)以及這兩項(xiàng)的總成績(jī)進(jìn)行了排名.其中甲、乙、丙三位同學(xué)的排名情況如下圖所示:

得出下面四個(gè)結(jié)論:

甲同學(xué)的邏輯排名比乙同學(xué)的邏輯排名更靠前

②乙同學(xué)的邏輯思維成績(jī)排名比他的閱讀表達(dá)成績(jī)排名更靠前

③甲、乙、丙三位同學(xué)的邏輯思維成績(jī)排名中,甲同學(xué)更靠前

④甲同學(xué)的閱讀表達(dá)成績(jī)排名比他的邏輯思維成績(jī)排名更靠前

則所有正確結(jié)論的序號(hào)是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市有一直角梯形綠地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.現(xiàn)過邊界CD上的點(diǎn)E處鋪設(shè)一條直的灌溉水管EF,將綠地分成面積相等的兩部分.

(1)如圖①,若E為CD的中點(diǎn),F(xiàn)在邊界AB上,求灌溉水管EF的長(zhǎng)度;
(2)如圖②,若F在邊界AD上,求灌溉水管EF的最短長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校隨機(jī)調(diào)查80名學(xué)生,以研究學(xué)生愛好羽毛球運(yùn)動(dòng)與性別的關(guān)系,得到下面的列聯(lián)表:

(1)將此樣本的頻率視為總體的概率,隨機(jī)調(diào)查本校的3名學(xué)生,設(shè)這3人中愛好羽毛球運(yùn)動(dòng)的人數(shù)為,求的分布列和數(shù)學(xué)期望;

(2)根據(jù)表3中數(shù)據(jù),能否認(rèn)為愛好羽毛球運(yùn)動(dòng)與性別有關(guān)?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以,,,分組的頻率分布直方圖如圖.

(1)求直方圖中的值;

(2)求月平均用電量的平均數(shù)、眾數(shù)和中位數(shù);

(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,MCEAD的交點(diǎn),ACBC,AC=BC.

(1)求證:AM平面EBC;

(2)求直線AB與平面EBC所成角的大小,

(3)求二面角A-BE-C的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案