【題目】某城市100戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

(1)求直方圖中的值;

(2)求月平均用電量的平均數(shù)、眾數(shù)和中位數(shù);

(3)在月平均用電量為,,,,的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在的用戶中應抽取多少戶?

【答案】(1);(2)平均數(shù),眾數(shù),中位數(shù);(3)戶.

【解析】

(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;

(2)用每個矩形下端的中點值乘以相應的概率值,累加得到平均數(shù),由直方圖中眾數(shù)為最高矩形下端的中點可得,易知中位數(shù)在[220,240)內(nèi),設中位數(shù)為a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;

(3)可得各段的用戶分別為25,15,10,5,可得抽取比例,可得要抽取的戶數(shù).

(1)由直方圖的性質(zhì)可得,解方程可得,∴直方圖中的值為0.0075;

(2)月平均用電量的平均數(shù)

月平均用電量的眾數(shù)是,

,

∴月平均用電量的中位數(shù)在內(nèi),

設中位數(shù)為,由可得,

∴月平均用電量的中位數(shù)為224;

(3)月平均用電量為的用戶有

月平均用電量為的用戶有,

月平均用電量為的用戶有,

月平均用電量為的用戶有

∴抽取比例為,

∴月平均用電量在的用戶中應抽取戶.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某小區(qū)準備在直角圍墻)內(nèi)建有一個矩形的少兒游樂場,分別在墻上,為了安全起見,過矩形的頂點建造一條如圖所示的圍欄分別在墻上,其中,,.

(1)①設,用表示圍欄的長度;

②設,用表示圍欄的長度;

(2)在第一問中,選擇一種表示方法,求如何設計,使得圍欄的長度最小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x2﹣4|+a|x﹣2|,x∈[﹣3,3].若f(x)的最大值是0,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在長方體中,的中點,連接.

(1)求證:平面平面

(2)求二面角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.

(1)求橢圓方程;

(2)設不過原點O的直線,與該橢圓交于PQ兩點,直線OP、OQ的斜率依次為,滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解人們對城市治安狀況的滿意度,某部門對城市部分居民的“安全感”進行調(diào)查,在調(diào)查過程中讓每個居民客觀地對自己目前生活城市的安全感進行評分,并把所得分作為“安全感指數(shù)”,即用區(qū)間[0,100]內(nèi)的一個數(shù)來表示,該數(shù)越接近100表示安全感越高.現(xiàn)隨機對該地區(qū)的男、女居民各500人進行了調(diào)查,調(diào)查數(shù)據(jù)如表所示:

安全感指數(shù)

[0,20)

[20,40)

[40,60)

[60,80)

[80,100]

男居民人數(shù)

8

16

226

131

119

女居民人數(shù)

12

14

174

122

178

根據(jù)表格,解答下面的問題:
(Ⅰ)估算該地區(qū)居民安全感指數(shù)的平均值;
(Ⅱ)如果居民安全感指數(shù)不小于60,則認為其安全感好.為了進一步了解居民的安全感,調(diào)查組又在該地區(qū)隨機抽取3對夫妻進行調(diào)查,用X表示他們之中安全感好的夫妻(夫妻二人都感到安全)的對數(shù),求X的分布列及期望(以樣本的頻率作為總體的概率).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+x﹣lnx,(a>0). (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設f(x)極值點為x0 , 若存在x1 , x2∈(0,+∞),且x1≠x2 , 使f(x1)=f(x2),求證:x1+x2>2x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|3x﹣1|﹣2|x|+2.
(1)解不等式:f(x)<10;
(2)若對任意的實數(shù)x,f(x)﹣|x|≤a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案