【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點,且直線恰好通過橢圓的右焦點.
(1)求橢圓的標準方程;
(2)經(jīng)過橢圓右焦點的直線和橢圓交于兩點,點在橢圓上,且,
其中為坐標原點,求直線的斜率.
【答案】(1);(2)
【解析】試題分析:(1)由知,可設(shè),其中,把,代入橢圓方程中解得,故橢圓方程為
(2)知直線的斜率不為零,故可設(shè)直線方程為,設(shè),由已知,從而,由于均在橢圓上,故有:,三式結(jié)合化簡得
,把直線方程為和橢圓方程聯(lián)立并結(jié)合韋達定理,即可求得的值
試題解析:(1)由知,可設(shè),其中
由已知,代入橢圓中得:即,解得
從而,
故橢圓方程為
(2)設(shè),由已知
從而,由于均在橢圓上,故有:
第三個式子變形為:
將第一,二個式子帶入得:(*)
分析知直線的斜率不為零,故可設(shè)直線方程為,與橢圓聯(lián)立得:
,由韋達定理
將(*)變形為:
即
將韋達定理帶入上式得:,解得
因為直線的斜率,故直線的斜率為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家“精準扶貧,產(chǎn)業(yè)扶貧“的戰(zhàn)略,進一步優(yōu)化能源消費結(jié)構(gòu),某市決定在一地處山區(qū)的縣推進光伏發(fā)電項目,在該縣山區(qū)居民中隨機抽取50戶,統(tǒng)計其年用電量得到以下統(tǒng)計表,以樣本的頻率作為概率.
用電量(度) | |||||
戶數(shù) | 5 | 15 | 10 | 15 | 5 |
(1)在該縣山區(qū)居民中隨機抽取10戶,記其中年用電量不超過600度的戶數(shù)為,求的數(shù)學(xué)期望;
(2)已知該縣某山區(qū)自然村有居民300戶,若計劃在該村安裝總裝機容量為300千瓦的光伏發(fā)電機組,該機組所發(fā)電量除保證該村正常用電外,剩余電量國家電網(wǎng)以元/度進行收購.經(jīng)測算以每千瓦裝機容量平均發(fā)電1000度,試估計該機組每年所發(fā)電量除保證正常用電外還能為該村創(chuàng)造直接收益多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中, 和是邊長為的等邊三角形, , 是中點, 是中點.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值的大;
(Ⅲ)在棱上是否存在一點,使得的余弦值為?若存在,指出點在上的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位從一所學(xué)校招收某類特殊人才,對20位已經(jīng)選拔入圍的學(xué)生進行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:
例如表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生是4人,由于部分數(shù)據(jù)丟失,只知道從這20位參加測試的學(xué)生中隨機抽取一位,抽到邏輯思維能力優(yōu)秀的學(xué)生的概率為.
(1)求、的值;
(2)從運動協(xié)調(diào)能力為優(yōu)秀的學(xué)生中任意抽取2位,求其中至少有一位邏輯思維能力優(yōu)秀的學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
某機構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責(zé)任強制保險條例》汽車交強險價格的規(guī)定, ,記為某同學(xué)家里的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進一輛事故車虧損元,一輛非事故車盈利元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有一輛事故車的概率;
②若該銷售商一次購進輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
若,過點的直線交曲線于兩點,且,求直線的方程;
若曲線表示圓,且直線與圓交于兩點,是否存在實數(shù),使得以為直徑的圓過原點,若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,△是等邊三角形,△是等腰直角三角形,,平面平面,平面,點為的中點,連接.
(1)求證:∥平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程,以為極點, 軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求圓的極坐標方程;
(Ⅱ)直線的極坐標方程是,射線與圓的交點為,與直線的交點為,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com