分析 (1)由已知求解三角形可得PD⊥AP,結合面面垂直的性質可得AB⊥PD,再由線面垂直的判定可得PD⊥平面PAB,再由面面垂直的判定得平面PAB⊥平面PDC;
(2)利用等體積法求點C到平面PBD的距離.
解答 (1)證明:∵AD=2,∴$PA=PD=\sqrt{2}$,則PA2+PD2=AD2,得PD⊥AP,
又∵平面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,
∴AB⊥平面PAD,又PD?平面PAD,
∴AB⊥PD,
又∵AP∩AB=A,且AP、AB?平面PAB,∴PD⊥平面PAB,
又PD?平面PDC,∴平面PAB⊥平面PDC;
(2)解:△PBD中,∵$PD=\sqrt{2},PB=\sqrt{6},BD=2\sqrt{2}$,∴PD2+PB2=BD2,
∴∠DPB=90°,則${S_{△PBD}}=\frac{1}{2}PD•PB=\sqrt{3}$,且S△BCD=2,
又P到平面BCD的距離h=1,
∴VC-PBD=VP-BCD=$\frac{1}{3}{S_{△BCD}}•h$=$\frac{1}{3}×2×1$=$\frac{2}{3}$,
∴C到平面PBD的距離=$\frac{{3{V_{C-PBD}}}}{{{S_{△PBD}}}}=\frac{{2\sqrt{3}}}{3}$.
點評 本題考查平面與平面垂直的判定,考查空間想象能力和思維能力,訓練了利用等積法求多面體的體積,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com