【題目】已知f(x)=|xex|,又g(x)=[f(x)]2﹣tf(x)(t∈R),若方程g(x)=﹣2有4個不同的根,則t的取值范圍為( )
A.
B.
C.
D.
【答案】C
【解析】解:解:f(x)= , 當x≥0時,f′(x)=ex+xex=(1+x)ex>0,
∴f(x)在[0,+∞)上是增函數(shù),
當x<0時,f′(x)=﹣ex﹣xex=(﹣1﹣x)ex ,
∴當x<﹣1時,f′(x)>0,當﹣1<x<0時,f′(x)<0,
∴f(x)在(﹣∞,﹣1]上是增函數(shù),在(﹣1,0)上是減函數(shù).
當x=﹣1時,f(x)取得極大值f(﹣1)= .
令f(x)=λ,
又f(x)≥0,f(0)=0,
則當λ<0時,方程f(x)=λ無解;
當λ=0或λ> 時,方程f(x)=λ有一解;
當λ= 時,方程f(x)=λ有兩解;
當0<λ< 時,方程f(x)=λ有三解.
∵方程g(x)=﹣2有4個不同的根,即[f(x)]2﹣tf(x)+2=0有4個不同的解,
∴關(guān)于λ的方程λ2﹣tλ+2=0在(0, )和( ,+∞)上各有一解.
∴ ,解得t> .
故選C.
科目:高中數(shù)學 來源: 題型:
【題目】某校高三2班有48名學生進行了一場投籃測試,其中男生28人,女生20人.為了了解其投籃成績,甲、乙兩人分別對全班的學生進行編號(1~48號),并以不同的方法進行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):
(Ⅰ)從甲抽取的樣本數(shù)據(jù)中任取兩名同學的投籃成績,記“抽到投籃成績優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學期望;
(Ⅱ)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認為投籃成績和性別有關(guān)?
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|x2-ax+a2-13=0},B={x|x2-4x+3=0},C={x|x2—3x=0}.
(1)若A∩B=AB,求a的值;
(2)若,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的一個對稱中心為,其圖像上相鄰兩個最高點間的距離為.
(1)求函數(shù)的解析式;
(2)用“五點作圖法”在給定的坐標系中作出函數(shù)在一個周期內(nèi)的圖像,并寫出函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對任意,都有.
(1)若函數(shù)的頂點坐標為且,求的解析式;
(2)函數(shù)的最小值記為,求函數(shù)在上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國時代吳國數(shù)學家趙爽所著《周髀算經(jīng)》中用趙爽弦圖給出了勾股定理的絕妙證明,如圖是趙爽弦圖,圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色和黃色,若朱色的勾股形中較大的銳角α為 ,現(xiàn)向該趙爽弦圖中隨機地投擲一枚飛鏢,則飛鏢落在黃色的小正方形內(nèi)的概率為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知AB⊥平面ACD,DE∥AB,△ACD是等腰三角形,∠CAD=120°,AD=DE=2AB.
(I)求證:平面BCE⊥平面CDE;
(II)求平面BCE與平面ADEB所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,圓C的參數(shù)方程為(α為參數(shù)),以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系.
(1)寫出圓C的極坐標方程及圓心C的極坐標;
(2)直線l的極坐標方程為與圓C交于M,N兩點,求△CMN的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體的棱長為, 分別是棱,的中點,過直線的平面分別與棱.交于,設(shè),,給出以下四個命題:
①平面 平面;②當且僅當時,四邊形的面積最。 ③四邊形周長,是單調(diào)函數(shù);④四棱錐的體積為常函數(shù);
以上命題中真命題的序號為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com