【題目】如圖,已知正四棱錐可繞著任意旋轉(zhuǎn),平面.若,,則正四棱錐在面內(nèi)的投影面積的取值范圍是_______.
【答案】
【解析】
由題意可得正四棱錐的側(cè)面與底面所成角為,側(cè)面上的高為,設(shè)正四棱錐的底面與平面所成角為,當(dāng)時(shí)投影為矩形,當(dāng)角度為時(shí),投影面積最大;當(dāng)時(shí),投影為一個(gè)矩形和一個(gè)三角形;當(dāng)時(shí),投影面積開始逐漸變大.
如圖正四棱錐,,
設(shè)底面中心為,取中點(diǎn),連接和
在中, ,可得:
,
是側(cè)面與底面的二面角.
在,.
側(cè)面與底面的二面角為.
設(shè)正四棱錐的底面與平面所成角為
①當(dāng)時(shí)投影為矩形
投影面積的
②當(dāng)時(shí),投影為一個(gè)矩形和一個(gè)三角形
(,)
當(dāng)
③當(dāng)時(shí)投影面積開始逐漸變大直到側(cè)面落到平面上,此時(shí)面積為,
綜上所述:
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的兩個(gè)焦點(diǎn),,設(shè),分別是橢圓的上、下頂點(diǎn),且四邊形的面積為,其內(nèi)切圓周長(zhǎng)為.
(1)求橢圓的方程;
(2)當(dāng)時(shí),,為橢圓上的動(dòng)點(diǎn),且,試問(wèn):直線是否恒過(guò)一定點(diǎn)?若是,求出此定點(diǎn)坐標(biāo),若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),,
(I)證明:平面平面;
(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)若曲線在點(diǎn)處的切線與軸平行,求;
(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開放以來(lái),我國(guó)經(jīng)濟(jì)持續(xù)高速增長(zhǎng)如圖給出了我國(guó)2003年至2012年第二產(chǎn)業(yè)增加值與第一產(chǎn)業(yè)增加值的差值以下簡(jiǎn)稱為:產(chǎn)業(yè)差值的折線圖,記產(chǎn)業(yè)差值為單位:萬(wàn)億元.
求出y關(guān)于年份代碼t的線性回歸方程;
利用中的回歸方程,分析2003年至2012年我國(guó)產(chǎn)業(yè)差值的變化情況,并預(yù)測(cè)我國(guó)產(chǎn)業(yè)差值在哪一年約為34萬(wàn)億元;
結(jié)合折線圖,試求出除去2007年產(chǎn)業(yè)差值后剩余的9年產(chǎn)業(yè)差值的平均值及方差結(jié)果精確到.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,.
樣本方差公式:.
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為拋物線上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)的直線交拋物線于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形.
(1)求拋物線的方程;
(2)若直線,且和拋物線有且只有一個(gè)公共點(diǎn),試問(wèn)直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓,拋物線,過(guò)上一點(diǎn)異于原點(diǎn)作的切線l交于A,B兩點(diǎn),切線l交x軸于點(diǎn)Q.
若點(diǎn)P的橫坐標(biāo)為1,且,求p的值.
求的面積的最大值,并求證當(dāng)面積取最大值時(shí),對(duì)任意的,直線l均與一個(gè)定橢圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某老小區(qū)建成時(shí)間較早,沒有集中供暖,隨著人們生活水平的日益提高熱力公司決定在此小區(qū)加裝暖氣該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年(截止2018年年底)小區(qū)居民有意向加裝暖氣的戶數(shù),得到如下數(shù)據(jù)
年份編號(hào)x | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
加裝戶數(shù)y | 34 | 95 | 124 | 181 | 216 |
(Ⅰ)若有意向加裝暖氣的戶數(shù)y與年份編號(hào)x滿足線性相關(guān)關(guān)系求y與x的線性回歸方程并預(yù)測(cè)截至2019年年底,該小區(qū)有多少戶居民有意向加裝暖氣;
(Ⅱ)2018年年底鄭州市民生工程決定對(duì)老舊小區(qū)加裝暖氣進(jìn)行補(bǔ)貼,該小區(qū)分到120個(gè)名額物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競(jìng)拍的方式分配名額,競(jìng)拍方案如下:①截至2018年年底已登記在冊(cè)的居民擁有競(jìng)拍資格;②每戶至多申請(qǐng)一個(gè)名額,由戶主在競(jìng)拍網(wǎng)站上提出申請(qǐng)并給出每平方米的心理期望報(bào)價(jià);③根據(jù)物價(jià)部門的規(guī)定,每平方米的初裝價(jià)格不得超過(guò)300元;④申請(qǐng)階段截止后,將所有申請(qǐng)居民的報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;⑤若最后出現(xiàn)并列的報(bào)價(jià),則認(rèn)為申請(qǐng)時(shí)問(wèn)在前的居民得到名額,為預(yù)測(cè)本次競(jìng)拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競(jìng)拍資格的50位居民進(jìn)行調(diào)查統(tǒng)計(jì)了他們的擬報(bào)競(jìng)價(jià),得到如圖所示的頻率分布直方圖:
(1)求所抽取的居民中擬報(bào)競(jìng)價(jià)不低于成本價(jià)180元的人數(shù);
(2)如果所有符合條件的居民均參與競(jìng)拍,請(qǐng)你利用樣本估計(jì)總體的思想預(yù)測(cè)至少需要報(bào)價(jià)多少元才能獲得名額(結(jié)果取整數(shù))
參考公式對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com