【題目】共享單車已成為一種時髦的新型環(huán)保交通工具,某共享單車公司為了拓展市場,對兩個品牌的共享單車在編號分別為的五個城市的用戶人數(單位:十萬)進行統計,得到數據如下:
城市 品牌 | 1 | 2 | 3 | 4 | 5 |
A品牌 | 3 | 4 | 12 | 6 | 8 |
B品牌 | 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享單車用戶人數超過50萬的城市稱為“優(yōu)城”,否則稱為“非優(yōu)城”,據此判斷能否有85%的把握認為“優(yōu)城”和共享單車品牌有關?
(Ⅱ)若不考慮其它因素,為了拓展市場,對A品牌要從這五個城市選擇三個城市進行宣傳,
(。┣蟪鞘2被選中的概率;
(ⅱ)求在城市2被選中的條件下城市3也被選中的概率.
【答案】(1)沒有(2)(ⅰ)0.6(ⅱ)
【解析】分析: (Ⅰ)根據題意列出2×2列聯表,求出K2=0.4<2.072,從而沒有85%的理由認為“優(yōu)質潛力城市”與“共享單車”品牌有關;
(Ⅱ)從這五個城市選擇三個城市的情形為10種,(ⅰ)城市2被選中的有6種,所求概率為;(ⅱ)在城市2被選中的有6種情形中,城市3被選中的有3種,所求概率為.
詳解: (Ⅰ)根據題意列出列聯表如下:
,
所以沒有85%的把握認為“優(yōu)城”與共享單車品牌有關.
(Ⅱ)從這五個城市選擇三個城市的情形為
共10種,
(ⅰ)城市2被選中的有6種,所求概率為;
(ⅱ)在城市2被選中的有6種情形中,城市3被選中的有3種,所求概率為.
科目:高中數學 來源: 題型:
【題目】對下列命題:
①直線與函數的圖象相交,則相鄰兩交點的距離為;
②點 是函數的圖象的一個對稱中心;
③函數在上單調遞減,則的取值范圍為;
④函數若對R恒成立,則.
其中所有正確命題的序號為____
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】汽車的普及給人們的出行帶來了諸多方便,但汽車超速行駛也造成了諸多隱患.為了解某一段公路汽車通過時的車速情況,現隨機抽測了通過這段公路的200輛汽車的時速,所得數據均在區(qū)間中,其頻率分布直方圖如圖所示.
(1)求被抽測的200輛汽車的平均時速.
(2)該路段路況良好,但屬于事故高發(fā)路段,交警部門對此路段過往車輛限速.對于超速行駛,交警部門對超速車輛有相應處罰:記分(扣除駕駛員駕照的分數)和罰款.罰款情況如下:
超速情況 | 10%以內 | 10%~20% | 20%~50% | 50%以上 |
罰款情況 | 0元 | 100元 | 150元 | 可以并處吊銷駕照 |
①求被抽測的200輛汽車中超速在10%~20%的車輛數.
②該路段車流量比較大,按以前統計該路段每天來往車輛約2000輛.試預估每天的罰款總數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數(a>0且a≠1)是奇函數.
(1)求常數k的值;
(2)若已知f(1)=,且函數在區(qū)間[1,+∞])上的最小值為—2,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,以原點為極點,以軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為:.
(1)若曲線的參數方程為(為參數),求曲線的直角坐標方程和曲線的普通方程;
(2)若曲線的參數方程為(為參數),,且曲線與曲線的交點分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長為1的正方體中,E,F分別為線段CD和上的動點,且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( )
A. 有最小值B. 有最大值C. 為定值3D. 為定值2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com