已知函數(shù)f(x)=2ax-a+2在區(qū)間(-1,1)上存在零點,則實數(shù)a的取值范圍是
 
考點:函數(shù)零點的判定定理
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可知函數(shù)f(x)=2ax-a+2在區(qū)間(-1,1)上單調(diào),從而化函數(shù)f(x)=2ax-a+2在區(qū)間(-1,1)上存在零點為(-2a-a+2)(2a-a+2)<0.
解答: 解:由題意,
函數(shù)f(x)=2ax-a+2在區(qū)間(-1,1)上單調(diào),
故有(-2a-a+2)(2a-a+2)<0,
解得,a<-2或a>
2
3
,
故答案為:(-∞,-2)∪(
2
3
,+∞);
點評:本題考查了函數(shù)零點的判定定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差為2的等差數(shù)列,且a1+1,a3+1,a7+1成等比數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)令bn=
1
an2-1
(n∈N*),求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinxcosx+
3
2
cos2x的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l與兩直線y=1,x-y-7=0分別交于P,Q兩點,線段PQ的中點是(1,-1)則P點的坐標(biāo)為(  )
A、(6,1)
B、(-2,1)
C、(4,-3)
D、(-4,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1

(Ⅰ)判斷函數(shù)的奇偶性,并加以證明;
(Ⅱ)判斷函數(shù)在其定義域上的單調(diào)性,并加以證明;
(Ⅲ)若不等式f(1-m)+f(1-m2)<0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-2y-3=0與圓(x-2)2+(y+3)2=9交于E、F兩點,則△EOF(O是原點)的面積是(  )
A、2
5
B、
3
4
C、
3
2
D、
6
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知存在實數(shù)x、y滿足約束條件
x≥2
x-2y+4≥0
2x-y-4≤0
x2+(y-1)2=R2(R>0)
,則R的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)點(x,y)在直線x+3y-4=0上移動時,表達(dá)式3x+27y+2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,與函數(shù)y=x相等的是(  )
A、y=(
x
)
2
B、y=
x2
C、y=
x,(x>0)
-x,(x<0)
D、y=
3x3

查看答案和解析>>

同步練習(xí)冊答案