【題目】在三棱錐P﹣ABC中,D為AB的中點.
(1)與BC平行的平面PDE交AC于點E,判斷點E在AC上的位置并說明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.
【答案】(1)為中點(2)詳見解析
【解析】試題分析:(1)根據(jù)線面平行的性質(zhì)進行判斷即可:
(2)根據(jù)面面垂直的性質(zhì)定理進行證明.
(1)解:E為AC中點.理由如下:
平面PDE交AC于E,
即平面PDE∩平面ABC=DE,
而BC∥平面PDF,BC平面ABC,
所以BC∥DE,
在△ABC中,因為D為AB的中點,所以E為AC中點;
(2)證:因為PA=PB,D為AB的中點,
所以AB⊥PD,
因為平面PCD⊥平面ABC,平面PCD∩平面ABC=CD,
在銳角△PCD所在平面內(nèi)作PO⊥CD于O,
則PO⊥平面ABC,
因為AB平面ABC,
所以PO⊥AB
又PO∩PD=P,PO,PD平面PCD,
則AB⊥平面PCD,
又PC平面PCD,
所以AB⊥PC.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其導函數(shù)設為.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個極值點,,試用表示;
(Ⅲ)在(Ⅱ)的條件下,若的極值點恰為的零點,試求,這兩個函數(shù)的所有極值之和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(m,n為常數(shù)),在處的切線方程為.
(Ⅰ)求的解析式并寫出定義域;
(Ⅱ)若,使得對上恒有成立,求實數(shù)的取值范圍;
(Ⅲ)若有兩個不同的零點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形中,,,、分別是、的中點,將三角形沿折起,則下列說法正確的是______________.
(1)不論折至何位置(不在平面內(nèi)),都有平面;
(2)不論折至何位置,都有;
(3)不論折至何位置(不在平面內(nèi)),都有;
(4)在折起過程中,一定存在某個位置,使.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)若函數(shù)有兩個不同極值點,求實數(shù)的取值范圍;
(3)當時,求證:對任意,恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在等腰梯形中,分別為的中點.現(xiàn)分別沿將和折起,使得平面平面,平面平面,連接,如圖2.
(1)求證:平面平面;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:若數(shù)列滿足,存在實數(shù),對任意,都有,則稱數(shù)列有上界,是數(shù)列的一個上界,已知定理:單調(diào)遞增有上界的數(shù)列收斂(即極限存在).
(1)數(shù)列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;
(2)若非負數(shù)列滿足,(),求證:1是非負數(shù)列的一個上界,且數(shù)列的極限存在,并求其極限;
(3)若正項遞增數(shù)列無上界,證明:存在,當時,恒有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1是某條公共汽車線路收支差額與乘客量的圖象.由于目前本條線路虧損,公司有關(guān)人員提出了兩種扭虧為盈的建議,如圖2、3所示.你能根據(jù)圖象判斷下列說法正確的是( )
①圖2的建議為減少運營成本;②圖2的建議可能是提高票價;
③圖3的建議為減少運營成本;④圖3的建議可能是提高票價.
A.①④B.②④C.①③D.②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com