已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓,它的離心率為,一個(gè)焦點(diǎn)和拋物線的焦點(diǎn)重合,過直線上一點(diǎn)M引橢圓的兩條切線,切點(diǎn)分別是A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點(diǎn)處的橢圓的切線方程是. 求證:直線恒過定點(diǎn);并出求定點(diǎn)的坐標(biāo).
(Ⅲ)是否存在實(shí)數(shù),使得恒成立?(點(diǎn)為直線恒過的定點(diǎn))若存在,求出的值;若不存在,請(qǐng)說明理由。
(Ⅰ)(Ⅱ)設(shè)切點(diǎn)坐標(biāo)為,,直線上一點(diǎn)M的坐標(biāo)切線方程分別為,。兩切線均過點(diǎn)M,即即點(diǎn)A,B的坐標(biāo)都適合方程故直線AB的方程是,直線AB恒過定點(diǎn)(Ⅲ)
解析試題分析:(I)設(shè)橢圓方程為。拋物線的焦點(diǎn)是,故,又,所以,
所以所求的橢圓方程為 ……………3分
(II)設(shè)切點(diǎn)坐標(biāo)為,,直線上一點(diǎn)M的坐標(biāo)。則切線方程分別為,。又兩切線均過點(diǎn)M,即,即點(diǎn)A,B的坐標(biāo)都適合方程,而兩點(diǎn)之間確定唯一的一條直線,故直線AB的方程是,顯然對(duì)任意實(shí)數(shù)t,點(diǎn)(1,0)都適合這個(gè)方程,故直線AB恒過定點(diǎn)。 ………………………………6分[
(III)將直線AB的方程,代入橢圓方程,得
,即
所以…………………..8分
不妨設(shè)
,同理……10分
所以
即。
故存在實(shí)數(shù),使得。 ……………………12分
考點(diǎn):橢圓性質(zhì)與方程,直線與橢圓相交的弦長(zhǎng)
點(diǎn)評(píng):直線與橢圓相交問題要充分利用韋達(dá)定理使其簡(jiǎn)化解題過程,圓錐曲線題目一直是學(xué)生得分較低的類型
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知直線l1:4x:-3y+6=0和直線l2x=-p/2:.若拋物線C:y2=2px上的點(diǎn)到直線l1和直線l2的距離之和的最小值為2.
(I )求拋物線C的方程;
(II)若以拋物線上任意一點(diǎn)M為切點(diǎn)的直線l與直線l2交于點(diǎn)N,試問在x軸上是否存 在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線與拋物線C交于兩點(diǎn),,且(a為正常數(shù)).過弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連結(jié)AD、BD得到.
(i)求實(shí)數(shù)a,b,k滿足的等量關(guān)系;
(ii)的面積是否為定值?若為定值,求出此定值;若不是定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓E過點(diǎn)(1,),離心率為.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線x+y+1=0與橢圓E相交于A、B(B在A上方)兩點(diǎn),問是否存在直線l,使l與橢圓相交于C、D(C在D上方)兩點(diǎn)且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某海域有、兩個(gè)島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過魚群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系。
(1)求曲線的標(biāo)準(zhǔn)方程;(6分)
(2)某日,研究人員在、兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),、兩島收到魚群在處反射信號(hào)的時(shí)間比為,問你能否確定處的位置(即點(diǎn)的坐標(biāo))?(8分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)直線與直線交于點(diǎn).
(1)當(dāng)直線過點(diǎn),且與直線垂直時(shí),求直線的方程;
(2)當(dāng)直線過點(diǎn),且坐標(biāo)原點(diǎn)到直線的距離為時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
( 本小題滿分12分)如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)在上,點(diǎn)在上,且滿足的軌跡為曲線。
求曲線的方程;
若過定點(diǎn)F(0,2)的直線交曲線于不同的兩點(diǎn)(點(diǎn)在點(diǎn)之間),且滿足,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)雙曲線C與橢圓有相同的焦點(diǎn),直線y=為的一條漸近線.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過點(diǎn)(0,4)的直線,交雙曲線于A,B兩點(diǎn),交x軸于點(diǎn)(點(diǎn)與的頂點(diǎn)不重合)。當(dāng) =,且時(shí),求點(diǎn)的坐標(biāo)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com