【題目】如圖在四棱錐中,側(cè)棱平面,底面是直角梯形,,,,,為側(cè)棱中點.

1)設(shè)為棱上的動點,試確定點的位置,使得平面平面,并寫出證明過程;

2)求二面角的余弦值.

【答案】1)當(dāng)中點時,滿足平面平面;證明見解析(2

【解析】

1)當(dāng)中點時,滿足平面平面,在梯形中,可得,,即四邊形為平行四邊形,得到,在中,根據(jù)、為中點,得到,再利用面面平行的判定定理得證.

2)根據(jù)、兩兩垂直,分別以、、、軸建立空間直角坐標(biāo)系,分別求得平面和平面的一個法向量,利用二面角的向量公式求解.

1)當(dāng)中點時,滿足平面平面

證明如下:

在梯形中,因為,,,

所以,

即四邊形為平行四邊形,所以,即平面,

中,因為分別為、中點,所以,即平面.

又因為,平面平面,

所以平面平面.

2)由題知、兩兩垂直,如圖,

分別以、、、軸建立空間直角坐標(biāo)系.

,,,,,

設(shè)平面的一個法向量為,

,所以,所以

又知平面,所以平面的一個法向量為,

所以,

由圖可知二面角是鈍角

所以二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)若(其中

(。┣髮崝(shù)t的取值范圍;

(ⅱ)證明:;

2)是否存在實數(shù)a,使得在區(qū)間內(nèi)恒成立,且關(guān)于x的方程內(nèi)有唯一解?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的有______.

①回歸直線恒過點,且至少過一個樣本點;

②根據(jù)列列聯(lián)表中的數(shù)據(jù)計算得出,而,則有的把握認(rèn)為兩個分類變量有關(guān)系,即有的可能性使得兩個分類變量有關(guān)系的推斷出現(xiàn)錯誤;

是用來判斷兩個分類變量是否相關(guān)的隨機(jī)變量,當(dāng)的值很小時可以推斷兩類變量不相關(guān);

④某項測量結(jié)果服從正態(tài)分布,則,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實驗中學(xué)從高二級部中選拔一個班級代表學(xué)校參加學(xué)習(xí)強(qiáng)國知識大賽,經(jīng)過層層選拔,甲、乙兩個班級進(jìn)入最后決賽,規(guī)定回答1個相關(guān)問題做最后的評判選擇由哪個班級代表學(xué)校參加大賽.每個班級6名選手,現(xiàn)從每個班級6名選手中隨機(jī)抽取3人回答這個問題已知這6人中,甲班級有4人可以正確回答這道題目,而乙班級6人中能正確回答這道題目的概率每人均為,甲、乙兩班級每個人對問題的回答都是相互獨立,互不影響的.

1)求甲、乙兩個班級抽取的6人都能正確回答的概率;

2)分別求甲、乙兩個班級能正確回答題目人數(shù)的期望和方差、,并由此分析由哪個班級代表學(xué)校參加大賽更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為極點,軸正半軸為極軸建立極坐標(biāo)系,設(shè)點在曲線上,點在曲線上,且為正三角形.

1)求點,的極坐標(biāo);

2)若點為曲線上的動點,為線段的中點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在四棱錐中,側(cè)棱平面,底面是直角梯形,,,,為側(cè)棱中點.

1)設(shè)為棱上的動點,試確定點的位置,使得平面平面,并寫出證明過程;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時曲線在點處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】比較甲、乙兩名學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng)的各項能力指標(biāo)值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達(dá)圖,例如圖中甲的數(shù)學(xué)抽象指標(biāo)值為4,乙的數(shù)學(xué)抽象指標(biāo)值為5,則下面敘述正確的是( )

A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力

B. 甲的數(shù)學(xué)建模能力指標(biāo)值優(yōu)于乙的直觀想象能力指標(biāo)值

C. 乙的六維能力指標(biāo)值整體水平優(yōu)于甲的六維能力指標(biāo)值整體水平

D. 甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值優(yōu)于甲的直觀想象能力指標(biāo)值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面上動點與兩個定點, ,且.

(1)求點的軌跡方程,并說明軌跡是什么圖形;

(2)記(1)中軌跡為,過點的直線所截得的線段長度為8,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案