【題目】比較甲、乙兩名學生的數(shù)學學科素養(yǎng)的各項能力指標值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達圖,例如圖中甲的數(shù)學抽象指標值為4,乙的數(shù)學抽象指標值為5,則下面敘述正確的是( )

A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力

B. 甲的數(shù)學建模能力指標值優(yōu)于乙的直觀想象能力指標值

C. 乙的六維能力指標值整體水平優(yōu)于甲的六維能力指標值整體水平

D. 甲的數(shù)學運算能力指標值優(yōu)于甲的直觀想象能力指標值

【答案】C

【解析】

利用雷達圖對每一個選項的命題逐一分析推理得解.

對于選項A, 甲的邏輯推理能力指標值為4,優(yōu)于乙的邏輯推理能力指標值為3,所以該命題是假命題;

對于選項B, 甲的數(shù)學建模能力指標值為4,乙的直觀想象能力指標值為5,所以乙的直觀想象能力指標值優(yōu)于甲的數(shù)學建模能力指標值,所以該命題是假命題;

對于選項C,甲的六維能力指標值的平均值為,乙的六維能力指標值的平均值為,因為,所以選項C正確;

對于選項D, 甲的數(shù)學運算能力指標值為4,甲的直觀想象能力指標值為5,所以甲的數(shù)學運算能力指標值不優(yōu)于甲的直觀想象能力指標值,故該命題是假命題.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),曲線在點處的切線方程為

1)求的解析式;

2)求過曲線上任意一點的切線與直線和直線所圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】實驗中學從高二級部中選拔一個班級代表學校參加學習強國知識大賽,經(jīng)過層層選拔,甲、乙兩個班級進入最后決賽,規(guī)定回答1個相關問題做最后的評判選擇由哪個班級代表學校參加大賽.每個班級6名選手,現(xiàn)從每個班級6名選手中隨機抽取3人回答這個問題已知這6人中,甲班級有4人可以正確回答這道題目,而乙班級6人中能正確回答這道題目的概率每人均為,甲、乙兩班級每個人對問題的回答都是相互獨立,互不影響的.

1)求甲、乙兩個班級抽取的6人都能正確回答的概率;

2)分別求甲、乙兩個班級能正確回答題目人數(shù)的期望和方差,并由此分析由哪個班級代表學校參加大賽更好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在四棱錐中,側(cè)棱平面,底面是直角梯形,,,,,為側(cè)棱中點.

1)設為棱上的動點,試確定點的位置,使得平面平面,并寫出證明過程;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設函數(shù)

1處取得極值,確定的值,并求此時曲線在點處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了使房價回歸到收入可支撐的水平,讓全體人民住有所居,近年來全國各一、二線城市打擊投機購房,陸續(xù)出臺了住房限購令.某市一小區(qū)為了進一步了解已購房民眾對市政府岀臺樓市限購令的認同情況,隨機抽取了本小區(qū)50戶住戶進行調(diào)查,各戶人平均月收入(單位:千元)的戶數(shù)頻率分布直方圖如圖,其中贊成限購的戶數(shù)如下表:

人平均月收入

贊成戶數(shù)

4

9

12

6

3

1

1)若從人平均月收入在的住戶中再隨機抽取兩戶,求所抽取的兩戶至少有一戶贊成樓市限購令的概率;

2)若將小區(qū)人平均月收入不低于7千元的住戶稱為高收入戶,人平均月收入低于7千元的住戶稱為非高收入戶根據(jù)已知條件完成如圖所給的列聯(lián)表,并說明能否有的把握認為收入的高低贊成樓市限購令有關.

非高收入戶

高收入戶

總計

贊成

不贊成

總計

附:臨界值表

0.1

0.05

0.010

0.001

2.706

3.841

6.63.5

10.828

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】比較甲、乙兩名學生的數(shù)學學科素養(yǎng)的各項能力指標值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達圖,例如圖中甲的數(shù)學抽象指標值為4,乙的數(shù)學抽象指標值為5,則下面敘述正確的是( )

A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力

B. 甲的數(shù)學建模能力指標值優(yōu)于乙的直觀想象能力指標值

C. 乙的六維能力指標值整體水平優(yōu)于甲的六維能力指標值整體水平

D. 甲的數(shù)學運算能力指標值優(yōu)于甲的直觀想象能力指標值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù),其中的一個極值點,且.

1)討論的單調(diào)性

2)求實數(shù)a的值

3)證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為圓上一動點,圓心關于軸的對稱點為,點分別是線段上的點,且.

(1)求點的軌跡方程;

(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.

查看答案和解析>>

同步練習冊答案