已知四棱錐P-ABCD,底面ABCD是、邊長為
的菱形,又
,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).
(1)證明:MB平面PAD;
(2)求點(diǎn)A到平面PMB的距離.
(1)證明見解析;(2).
解析試題分析:(1)易證,又因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic5/tikupic/78/7/1pk0f4.png" style="vertical-align:middle;" />是
,邊長為
的菱形,且
為
中點(diǎn),得
,最后由線面垂直的判定定理即可證明
面
;
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0e/a/1gvmv2.png" style="vertical-align:middle;" />是中點(diǎn),所以點(diǎn)
與
到平面
等距離,過點(diǎn)
作
于
,由(1)可得平面
平面
,所以
平面
,
是點(diǎn)
到平面
的距離,從而求解.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/95/6/1jvml2.png" style="vertical-align:middle;" />平面,
平面
所以
又因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic5/tikupic/78/7/1pk0f4.png" style="vertical-align:middle;" />是、邊長為
的菱形,且M為AD中點(diǎn),
所以.
又
所以平面
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0e/a/1gvmv2.png" style="vertical-align:middle;" />是中點(diǎn),所以點(diǎn)
與
到平面
等距離
過點(diǎn)作
于
,
由(1)得平面
,又
面
,所以平面
平面
,
所以平面
.
故是點(diǎn)
到平面
的距離
所以點(diǎn)到平面
的距離為
.
考點(diǎn):1.直線與平面垂直的判定和性質(zhì);2.點(diǎn)、線、面間的距離計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知三棱錐的側(cè)棱
兩兩垂直,且
,
,
是
的中點(diǎn)。
(1)求異面直線與
所成角的余弦值;
(2)求直線和平面
的所成角的正弦值。
(3)求點(diǎn)E到面ABC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是以
為直徑的半圓上異于點(diǎn)
的點(diǎn),矩形
所在的平面垂直于該半圓所在平面,且
(Ⅰ).求證:;
(Ⅱ).設(shè)平面與半圓弧的另一個(gè)交點(diǎn)為
,
①.求證://
;
②.若,求三棱錐E-ADF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點(diǎn)B到平面MAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面是正方形,
底面
,
是
上一點(diǎn)
(1)求證:平面平面
;
(2)設(shè),
,求點(diǎn)
到平面
的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com