【題目】當(dāng)今,手機已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號低頭族,手機已經(jīng)嚴(yán)重影響了人們的生活.一媒體為調(diào)查市民對低頭族的認(rèn)識,從某社區(qū)的500名市民中隨機抽取n名市民,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖如圖:

組數(shù)

分組(單位:歲)

頻數(shù)

頻率

1

5

0.05

2

20

0.20

3

a

0.35

4

30

b

5

10

0.10

合計

n

1.00

1)求出表中a,b,n的值,并補全頻率分布直方圖;

2)媒體記者為了做好調(diào)查工作,決定在第2,4,5組中用分層抽樣的方法抽取6名市民進行問卷調(diào)查,再從這61民中隨機抽取2名接受電視采訪,求第2組至少有一名接受電視采訪的概率.

【答案】(1),,直方圖見解析;(2).

【解析】

1)根據(jù)頻率分布表中頻數(shù)和頻率的比例關(guān)系,即可求解得到a,b,n;

2)分別求出第2,45組中用分層抽樣的方法得到的人數(shù),利用古典概型計算即得解.

1)由題意及頻率分布表可知:,

所以,.

補全頻率分布直方圖,如圖所示.

2)第2,4,5組總?cè)藬?shù)為,

故第2組應(yīng)抽人數(shù)為,記為1,2,

4組應(yīng)抽人數(shù)為,記為a,b,c,

5組應(yīng)抽人數(shù)為,記為m.

從這6名市民中隨機抽取兩名的所有的基本事件有:

,,,,,,,,,,,,共15個,

符合條件第2組至少有一名接受電視采訪的基本事件有9個,

故第2組至少有一名接受電視采訪概率為寶貝.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,過橢圓右頂點的直線交橢圓于另外一點,已知點的縱坐標(biāo)為.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點分別在直線的上、下方,設(shè)四邊形的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在去年的足球甲聯(lián)賽上,一隊每場比賽平均失球數(shù)是1.5,全年比賽失球個數(shù)的標(biāo)準(zhǔn)差為1.1;二隊每場比賽平均失球數(shù)是2.1,全年失球個數(shù)的標(biāo)準(zhǔn)差是0.4,你認(rèn)為下列說法中正確的個數(shù)有( )

①平均來說一隊比二隊防守技術(shù)好;②二隊比一隊防守技術(shù)水平更穩(wěn)定;③一隊防守有時表現(xiàn)很差,有時表現(xiàn)又非常好;④二隊很少不失球.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于平面上任意個點構(gòu)成的點集,如果其中任意兩點之間的距離均已確定,那么就稱這個點集是“穩(wěn)定的”.求證:在格點的平面點集中,無三點共線,且其中的個兩點之間的距離已被確定,那么點集就是“穩(wěn)定的”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如下表:

網(wǎng)購金額(單位:千元)

頻數(shù)

頻率

網(wǎng)購金額(單位:千元)

頻數(shù)

頻率

[0,0.5)

3

0.05

[1.5,2)

15

0.25

[0.5,1)

[2,2.5)

18

0.30

[1,1.5)

9

0.15

[2.5,3]

若將當(dāng)日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為2:3.

(1)確定,,的值,并補全頻率分布直方圖;

(2)①.試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);

②.若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當(dāng)日評為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評為“皇冠店”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點.若直與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象的相鄰兩條對稱軸之間的距離為.

(1)討論函數(shù)f(x)在區(qū)間上的單調(diào)性;

(2)將函數(shù)的圖象向左平移個單位,再將所得圖象上各點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,得到函數(shù)的圖象.求上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的單調(diào)性;

2)若對任意時,都有,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中錯誤的是( )

A. 命題“若,則”的逆否命題是真命題

B. 命題“”的否定是“

C. 為真命題,則為真命題

D. 已知,則“”是“”的必要不充分條件

查看答案和解析>>

同步練習(xí)冊答案