11.已知$\frac{π}{4}<α<π$,$cos(α-\frac{π}{4})=\frac{3}{5}$,則sinα=$\frac{{7\sqrt{2}}}{10}$.

分析 由已知角的范圍即可求出sin($α-\frac{π}{4}$),再利用兩角和與差的余弦函數(shù)公式及正弦函數(shù)公式以及特殊角的三角函數(shù)值化簡(jiǎn),求出sinα+cosα和sinα-cosα的值,即可求出sinα的值.

解答 解:∵$\frac{π}{4}<α<π$,
∴$0<α-\frac{π}{4}<\frac{3π}{4}$,又$cos(α-\frac{π}{4})=\frac{3}{5}$,
∴sin($α-\frac{π}{4}$)=$\frac{4}{5}$.
∵cos(α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(cosα+sinα)=$\frac{3}{5}$,sin($α-\frac{π}{4}$)=$\frac{\sqrt{2}}{2}(sinα-cosα)=\frac{4}{5}$.
∴sinα+cosα=$\frac{3\sqrt{2}}{5}$,$sinα-cosα=\frac{4\sqrt{2}}{5}$,
解得sinα=$\frac{7\sqrt{2}}{10}$.
故答案為:$\frac{7\sqrt{2}}{10}$.

點(diǎn)評(píng) 本題考查了兩角和與差的余弦公式及正弦公式的應(yīng)用,考查了同角三角函數(shù)間的基本關(guān)系,熟練掌握公式是解本題的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某地為了了解地區(qū)100000戶家庭的用電情況,采用分層抽樣的方法抽取了500戶家庭的月均用電量,并根據(jù)這500戶家庭的月均用電量畫出頻率分布直方圖(如圖),則該地區(qū)100000戶家庭中月均用電度數(shù)在[70,80]的家庭大約有12000戶.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知P是曲線$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),若M是∠F1PF2的角平分線上的一點(diǎn),且$\overrightarrow{{F}_{1}M}$•$\overrightarrow{MP}$=0,則|$\overrightarrow{OM}$|的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)是定義在(0,+∞)上的函數(shù),且對(duì)任意的正實(shí)數(shù)x1,x2均有:(x1-x2)[f(x1)-f(x2)]>0,則不等式f(x)-f(8x-16)>0的解集是( 。
A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,$\frac{16}{7}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$cos(\frac{π}{2}+φ)=\frac{2}{3}$,且$|φ|<\frac{π}{2}$,則tanφ=(  )
A.$-\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.根據(jù)下列算法語句,將輸出的A值依次記為a1,a2,…,an,…,a2015;已知函數(shù)f(x)=a2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是a1,且函數(shù)y=f(x)的圖象關(guān)于直線x=$\frac{1}{6}$對(duì)稱.
(Ⅰ)求函數(shù)y=f(x)表達(dá)式;
(Ⅱ)已知△ABC中三邊a,b,c對(duì)應(yīng)角A,B,C,a=4,b=4$\sqrt{3}$,∠A=30°,求f(B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若異面直線a、b所成的角為60°,則過空間一點(diǎn)P且與a、b所成的角都為60°的直線有3條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}滿足a8=2,an+1=$\frac{1}{1-{a}_{n}}$,則a1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列結(jié)論中正確的序號(hào)是①②③.
①函數(shù)y=ax(a>0且a≠1)與函數(shù)$y={log_a}{a^x}$(a>0且a≠1)的定義域相同;
②函數(shù)y=k•3x(k>0)(k為常數(shù))的圖象可由函數(shù)y=3x的圖象經(jīng)過平移得到;
③函數(shù)$y=\frac{1}{2}+\frac{1}{{{2^x}-1}}$(x≠0)是奇函數(shù)且函數(shù)$y=x\;(\frac{1}{{{3^x}-1}}+\frac{1}{2})$(x≠0)是偶函數(shù);
④若x1是函數(shù)f(x)的零點(diǎn),且m<x1<n,則f(m)•f(n)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案