【題目】某教育機(jī)構(gòu)隨機(jī)某校20個(gè)班級(jí),調(diào)查各班關(guān)注漢字聽寫大賽的學(xué)生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,以組距為5將數(shù)據(jù)分組成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]時(shí),所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是(

A.
B.
C.
D.

【答案】A
【解析】解:由頻率分布直方圖可知:第一組的頻數(shù)為20×0.01×5=1個(gè),
[0,5)的頻數(shù)為20×0.01×5=1個(gè),
[5,10)的頻數(shù)為20×0.01×5=1個(gè),
[10,15)頻數(shù)為20×0.04×5=4個(gè),
[15,20)頻數(shù)為20×0.02×5=2個(gè),
[20,25)頻數(shù)為20×0.04×5=4個(gè),
[25,30)頻數(shù)為20×0.03×5=3個(gè),
[30,35)頻數(shù)為20×0.03×5=3個(gè),
[35,40]頻數(shù)為20×0.02×5=2個(gè),
則對(duì)應(yīng)的莖葉圖為A,
故選:A.
根據(jù)頻率分布直方圖,分別計(jì)算每一組的頻數(shù)即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中, , , ,平面平面,四邊形是矩形, ,點(diǎn)在線段上.

(1)當(dāng)為何值時(shí), 平面?證明你的結(jié)論;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn= n,
(1)求通項(xiàng)公式an的表達(dá)式;
(2)令bn=an2n1 , 求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率P與日產(chǎn)量x(萬(wàn)件)之間大體滿足關(guān)系: .(注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品).已知每生產(chǎn)1萬(wàn)件合格的元件可以盈利2萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(2)當(dāng)日產(chǎn)量x為多少時(shí),可獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知底面,異面直線所成角等于.

(1)求證: 平面平面;

(2)求直線和平面所成角的正弦值;

(3) 在棱上是否存在一點(diǎn),使得平面與平面所成銳二面角的正切值為?若存在,指出點(diǎn)在棱上的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)內(nèi)某知名連鎖店分店開張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該分店經(jīng)理對(duì)開業(yè)前天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì), 表示開業(yè)第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)若從這天中隨機(jī)抽取兩天,求至少有天參加抽獎(jiǎng)人數(shù)超過的概率;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)若該活動(dòng)持續(xù)天,共有多少名顧客參加抽獎(jiǎng).

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的部分圖象如圖所示.

(1)求f(x)> 在x∈[0,π]上的解集;
(2)設(shè)g(x)=2 cos2x+f(x),g(α)= + ,α∈( , ),求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)內(nèi)某知名連鎖店分店開張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該分店經(jīng)理對(duì)開業(yè)前天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì), 表示開業(yè)第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)若該分店此次抽獎(jiǎng)活動(dòng)自開業(yè)始,持續(xù)天,參加抽獎(jiǎng)的每位顧客抽到一等獎(jiǎng)(價(jià)值元獎(jiǎng)品)的概率為,抽到二等獎(jiǎng)(價(jià)值元獎(jiǎng)品)的概率為,抽到三等獎(jiǎng)(價(jià)值元獎(jiǎng)品)的概率為.

試估計(jì)該分店在此次抽獎(jiǎng)活動(dòng)結(jié)束時(shí)送出多少元獎(jiǎng)品?

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程是是參數(shù)),以坐標(biāo)原點(diǎn)為原點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)判斷直線與曲線的位置關(guān)系;

(2)過直線上的點(diǎn)作曲線的切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案