已知集合A={x|(x-a)(x2-ax+a-1)=0},A中元素之和為3,求a的值.
考點:元素與集合關(guān)系的判斷
專題:集合
分析:先求出方程的解,x=a,a-1,或1.由于集合中的元素要滿足互異性,所以需討論方程解的情況,分成a=1,a-1=1,a≠1且a-1≠1三種情況進行討論,根據(jù)元素之和為3便可求出a.
解答: 解:x2-ax+a-1=[x-(a-1)](x-1)=0;
∴方程(x-a)(x2-ax+a-1)=0的解為:
x1=a,x2=a-1,x3=1;
若a=1,則A={1,0},不滿足A中元素之和為3;
若a-1=1,則A={2,1},元素和為3;
若a≠1,且a≠2,則A={a,a-1,1},∴a+a-1+1=3,解得a=
3
2

∴a=2或a=
3
2
點評:注意需對方程解中是否有相等的情況進行討論,不能直接讓方程的解的和為3求a,并且討論時不要漏了可能的情況.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè){an}是公比大于1的等比數(shù)列,Sn為其前n項和.已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=
1
(log2an+1)•(log2an+2)
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(1+x)lnx.
(Ⅰ)判斷f(x)在(0,+∞)的單調(diào)性并證明你的結(jié)論;
(Ⅱ)設(shè)g(x)=
f(x)
a(1-x)
(a≠0),若對一切的x∈(0,1),不等式g(x)<-2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=AC=
2
,AA′=1,點M、N分別為A′B,B′C′的中點
(1)證明:平面AA′B′B⊥平面AA′C′C;
(2)求直線MN與平面AA′B′B所成角的正切值;
(3)求三棱錐A′-MNC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個盒子中裝有5張卡片,上面分別記著數(shù)字1,1,2,2,2,每張卡片從外觀上看毫無差異,現(xiàn)從盒子中有放回的任意取2張卡片,記下上面數(shù)字分別為X和Y,兩次所得數(shù)字之和記為M,即M=X+Y
(1)求隨機變量M的分布列和數(shù)學期望
(2)若規(guī)定所得數(shù)字之和為3即可獲得獎品,先甲乙兩人各自玩了一次上面的游戲,試求兩人之中至少有一人獲得獎品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p≠0,數(shù)列{an}滿足:a1=2,an+1=pan+1-p(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)bn=2-qn-1(n∈N*),當n≥2時,p,q都在區(qū)間(0,1)內(nèi)變化,且滿足p2n-2+q2n-2≤1時,求所有點(an,bn)所構(gòu)成圖形的面積;
(3)當p>1時,證明:
n
p
a1
a2
+
a2
a3
+…+
an
an+1
n+1
p
(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,點P(1,
2
3
3
)是橢圓上的一點,且|PF1|+|PF2|=2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l1,l2分別過點F1,F(xiàn)2,且l1⊥l2,直線l1交橢圓C于D、E兩點,直線l2交橢圓C于M、N兩點,求四邊形DMEN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在股票市場上,投資者常參考股價(每一股的價格)的某條平滑均線的變化情況來決定買入或賣出股票.股民老張在研究股票的走勢圖時,發(fā)現(xiàn)一只股票的均線近期走得很有特點:如果按如圖所示的方式建立平面直角坐標系xoy,則股價y(元)和時間x的關(guān)系在ABC段可近似地用解析式y(tǒng)=asin(ωx+φ)+b(0<φ<π)來描述,從C點走到今天的D點,是震蕩筑底階段,而今天出現(xiàn)了明顯的筑底結(jié)束的標志,且D點和C點正好關(guān)于直線l:x=34對稱.老張預(yù)計這只股票未來的走勢如圖中虛線所示,這里DE段與ABC段關(guān)于直線l對稱,EF段是股價延續(xù)DE段的趨勢(規(guī)律)走到這波上升行情的最高點F.現(xiàn)在老張決定取點A(0,22),點B(12,19),點D(44,16)來確定解析式中的常數(shù)a,b,ω,φ,并且求得ω=
π
72

(1)請你幫老張算出a,b,φ,并回答股價什么時候見頂(即求F點的橫坐標)
(2)老張如能在今天以D點處的價格買入該股票3000股,到見頂處F點的價格全部賣出,不計其它費用,這次操作他能賺多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-
x2
2
+x在區(qū)間[m,n]上的值域是[3m,3n],則m-n=
 

查看答案和解析>>

同步練習冊答案