12.設(shè){an}是等比數(shù)列,公比q=$\sqrt{2}$,Sn為{an}的前n項和.記Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,設(shè)Tm為數(shù)列{Tn}的最大項,則m=( 。
A.2B.1C.4D.3

分析 首先用公比q和a1分別表示出Sn和S2n,代入Tn易得到Tn的表達(dá)式,再根據(jù)基本不等式得出m.

解答 解:設(shè)等比數(shù)列的首項為a1,則an=a1($\sqrt{2}$)n-1,Sn=$\frac{{a}_{1}[1-(\sqrt{2})^{n}]}{1-\sqrt{2}}$,
∴Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$=$\frac{17•\frac{{a}_{1}[1-(\sqrt{2})^{n}]}{1-\sqrt{2}}-\frac{{a}_{1}[1-(\sqrt{2})^{2n}]}{1-\sqrt{2}}}{{a}_{1}•(\sqrt{2})^{n}}$=$\frac{1}{1-\sqrt{2}}$•[($\sqrt{2}$)n+$\frac{16}{(\sqrt{2})^{n}}$-17],
∵($\sqrt{2}$)n+$\frac{16}{(\sqrt{2})^{n}}$≥8,當(dāng)且僅當(dāng)($\sqrt{2}$)n=$\frac{16}{(\sqrt{2})^{n}}$即n=4時取等號,
所以當(dāng)m=4時,Tn有最大值.
故選C.

點評 本題考查了等比數(shù)列的前n項和公式與通項及平均值不等式的應(yīng)用,屬于中等題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)等差數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{2}n{a_n}+{a_n}$-c(c是常數(shù),n∈N*),a2=6.
(I)求c的值及數(shù)列{an}的通項公式;
(II)設(shè)bn=$\frac{{{a_n}-2}}{{{2^{n+1}}}}$,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=3x-3ax+b且$f(1)=\frac{8}{3}$,$f(2)=\frac{80}{9}$.
(1)求a,b的值;        
 (2)判斷f(x)的奇偶性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a+1)x-2a,x<1}\\{lnx,x≥1}\end{array}\right.$的值域為R,則實數(shù)a的范圍是( 。
A.[-1,1]B.(-1,1]C.[1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x|1≤x<6},B={x|5<x<10},C={x|ax+1>0}.
(Ⅰ)求A∪B,(∁RA)∩B;
(Ⅱ)若A∩C=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)命題P:?n∈N,n2≤2n,則¬P為( 。
A.?n∈N,n2≤2nB.?n∈N,n2>2nC.?n∈N,n2>2nD.?n∈N,n2=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知α是△ABC的一個內(nèi)角,且$sinα+cosα=\frac{{\sqrt{2}}}{2}$,則sin2α的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某服裝商場為了了解毛衣的月銷售量y(件)與月平均氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了某4個月的月銷售量與當(dāng)月平均氣溫,其數(shù)據(jù)如表:
月平均氣溫x(°C)171382
月銷售量y(件)24334055
(1)算出線性回歸方程$\widehat{y}$=bx+a; (a,b精確到十分位)
(2)氣象部門預(yù)測下個月的平均氣溫約為6℃,據(jù)此估計,求該商場下個月毛衣的銷售量.
參考公式:線性回歸方程為,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)=$\left\{\begin{array}{l}{x-5(x≥7)}\\{f(x+3)(x<7)}\end{array}\right.$(x∈N),那么f(3)等于(  )
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案