9.已知函數(shù)f(x)=ex+$\frac{2x-5}{{x}^{2}+1}$的圖象在點(diǎn)(0,f(0))處的切線與直線x-my+4=0垂直,則實(shí)數(shù)m的值為( 。
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

分析 由出原函數(shù)的導(dǎo)函數(shù),得到f′(0),再由兩直線垂直與斜率的關(guān)系求得m值.

解答 解:由f(x)=ex+$\frac{2x-5}{{x}^{2}+1}$,得f′(x)=${e}^{x}+\frac{2({x}^{2}+1)-2x(2x-5)}{({x}^{2}+1)^{2}}={e}^{x}+\frac{-2{x}^{2}+10x+2}{({x}^{2}+1)^{2}}$,
則f′(0)=e0+2=3,
∵函數(shù)f(x)=ex+$\frac{2x-5}{{x}^{2}+1}$的圖象在點(diǎn)(0,f(0))處的切線與直線x-my+4=0垂直,
∴$\frac{1}{m}=-\frac{1}{3}$,則m=-3.
故選:A.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,過曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的外接球的半徑為(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.3$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)集合A={2,0,11},則集合A的真子集個(gè)數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F,A,B分別為雙曲線C左、右兩支上的點(diǎn),且四邊形ABOF(O為坐標(biāo)原點(diǎn))為菱形,則雙曲線C的離心率為( 。
A.$\sqrt{5}$B.2$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,菱形ABEF⊥直角梯形ABCD,∠BAD=∠CDA=90°,∠ABE=60°,AB=2AD=2CD=2,H是EF的中點(diǎn)
(1)求證:平面AHC⊥平面BCE; 
(2)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,離心率為$\frac{1}{2}$,傾斜角為$\frac{π}{4}$的動(dòng)直線l與橢圓E交于M,N兩點(diǎn),則當(dāng)△FMN的周長的取得最大值8時(shí),直線l的方程為( 。
A.x-y-1=0B.x-y=0C.x-y-$\sqrt{3}$=0D.x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}滿足a2=2,點(diǎn)(a4,a6)在直線x+2y-16=0上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an+2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.己知3sin(π-α)+cos(2π-α)=0.
(1)求 $\frac{sinα+cosα}{2sinα-cosα}$
(2)求$\frac{{sin2α+{{cos}^2}α}}{2cos2α+sin2α+2}$
(3)求$tan(2α-\frac{π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.判斷兩個(gè)變量y與x是否相關(guān)時(shí),選擇了4個(gè)不同的模型,它們的相關(guān)指數(shù)R2分別為:模型1的相關(guān)指數(shù)R2為0.86,模型2的相關(guān)指數(shù)R2為0.68,模型3的相關(guān)指數(shù)R2為0.88,模型4的相關(guān)指數(shù)R2為0.66.其中擬合效果最好的模型是( 。
A.模型1B.模型2C.模型3D.模型4

查看答案和解析>>

同步練習(xí)冊答案