6.某幾何體的三視圖如圖所示,其側(cè)視圖是一個等邊三角形,則此幾何體的體積是( 。
A.24$\sqrt{3}$B.8$\sqrt{3}$C.16$\sqrt{3}$D.16

分析 根據(jù)三視圖可知該幾何體是四棱錐,底面是長為4,寬為3的矩形.高為2$\sqrt{3}$.可得此幾何體的體積.

解答 解:由題意:該幾何體是四棱錐,底面是長為4,寬為3的矩形.
側(cè)視圖是一個等邊三角形,所以高為2$\sqrt{3}$.
此幾何體的體積$V=\frac{1}{3}Sh$=4×3×$\frac{1}{3}×2\sqrt{3}$=8$\sqrt{3}$.
故選:B.

點評 本題考查了對三視圖的投影認識和理解,邊長之間的關系以及棱錐體的體積計算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.設集合A={x∈N|0≤x<3}的真子集個數(shù)為( 。
A.16B.8C.7D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}(1-x),x<1\\-{(x-2)^2}+2,x≥1\end{array}$,則關于x的方程f(|x|)=a(a∈R)的實根個數(shù)不可能為( 。
A.5個B.4個C.3個D.2個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.直線l:y=x+1上的點到圓C:x2+y2+2x+4y+4=0上的點的最近距離為( 。
A.$\sqrt{2}$B.2-$\sqrt{2}$C.1D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$).
(1)求f(x)的對稱軸和對稱中心;
(2)求函數(shù)f(x)在[-$\frac{π}{8}$,$\frac{π}{2}$]上的最小值和最大值,并求出取得最值時的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.命題“若a+b+c=3,則a2+b2+c2≥3”的逆命題是( 。
A.“若a2+b2+c2≥3,則a+b+c=3”B.“若a2+b2+c2<3,則a+b+c≠3”
C.“若a2+b2+c2≥3,則a+b+c≠3”D.“若a2+b2+c2<3,則a+b+c=3”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.計算:sin(-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,cos(-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,tan(-$\frac{7π}{6}$)=$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,若f(3-2a)>f(a),則實數(shù)a的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=$\left\{\begin{array}{l}{(x-a)^2}+1,x≤0\\{x^2}+\frac{2}{x}+a,x>0\end{array}$,若f(0)是f(x)的最小值,則a的取值范圍為(  )
A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]

查看答案和解析>>

同步練習冊答案