求下列標(biāo)準(zhǔn)方程(8分)
(1)橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別為(0,2),(0,-2),且點(diǎn)P,)在橢圓上.
(2)橢圓長(zhǎng)軸是短軸的3倍,且過(guò)點(diǎn)A(4,0).
(3)雙曲線經(jīng)過(guò)點(diǎn)(-3,2),且一條漸近線為y=x
(4)雙曲線離心率為,且過(guò)點(diǎn)(4,).
(1)
(2)
(3)
(4)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)已知拋物線
(1)設(shè)是C1的任意兩條互相垂直的切線,并設(shè),證明:點(diǎn)M的縱坐標(biāo)為定值;
(2)在C1上是否存在點(diǎn)P,使得C1在點(diǎn)P處切線與C2相交于兩點(diǎn)A、B,且AB的中垂線恰為C1的切線?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題15分)已知拋物線,過(guò)點(diǎn)的直線交拋物線兩點(diǎn),且
(1)求拋物線的方程;
(2)過(guò)點(diǎn)軸的平行線與直線相交于點(diǎn),若是等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共12分)
在直角坐標(biāo)系中,動(dòng)點(diǎn)P到兩定點(diǎn),的距離之和等于4,設(shè)動(dòng)點(diǎn)P的軌跡為,過(guò)點(diǎn)的直線與交于A,B兩點(diǎn).
(1)寫(xiě)出的方程;
(2)設(shè)d為A、B兩點(diǎn)間的距離,d是否存在最大值、最小值;若存在,求出d的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線x軸于點(diǎn)C, ,,動(dòng)點(diǎn)到直線的距離是它到點(diǎn)D的距離的2倍 
(I)求點(diǎn)的軌跡方程;
(II)設(shè)點(diǎn)K為點(diǎn)的軌跡與x軸正半軸的交點(diǎn),直線交點(diǎn)的軌跡于兩點(diǎn)(與點(diǎn)K均不重合),且滿(mǎn)足 求直線EF在X軸上的截距;
(Ⅲ)在(II)的條件下,動(dòng)點(diǎn)滿(mǎn)足,求直線的斜率的取值范圍 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在同一坐標(biāo)系中,方程a2x2+b2y2=1與ax+by2=0(ab>0)的曲線大致是      (   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的左焦點(diǎn)為,左準(zhǔn)線為,點(diǎn)線段交橢圓于點(diǎn),若,則_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線方程為,類(lèi)比上述方法可以得到橢圓類(lèi)似的性質(zhì)為_(kāi)_______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,定義點(diǎn)之間的“直角距離”為。若到點(diǎn)的“直角距離”相等,其中實(shí)數(shù)滿(mǎn)足,則所有滿(mǎn)足條件的點(diǎn)的軌跡的長(zhǎng)度之和為

查看答案和解析>>

同步練習(xí)冊(cè)答案