【題目】已知定點,動點異于原點y軸上運動,連接FP,過點PPMx軸于點M,并延長MP到點N,且,

求動點N的軌跡C的方程;

若直線l與動點N的軌跡交于A、B兩點,若,求直線l的斜率k的取值范圍.

【答案】1 ;(2)

【解析】

設(shè)出動點N,則M,P的坐標(biāo)可表示出,利用,,求得xy的關(guān)系式,即N的軌跡方程;設(shè)出直線l的方程,AB的坐標(biāo),根據(jù),推斷出進(jìn)而求得的值,把直線與拋物線方程聯(lián)立消去x求得的表達(dá)式,進(jìn)而氣的bk的關(guān)系式,利用弦長公式表示出,根據(jù)的范圍,求得k的范圍.

設(shè)動點,則,,

,即,

即為所求.

設(shè)直線l方程為,l與拋物線交于點、,

則由,得,即,,

可得其中,,,

當(dāng)時,

由題意,,

可得,

,解得

,或

即所求k的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A. ”是“”成立的充分不必要條件

B. 命題,則

C. 為了了解800名學(xué)生對學(xué)校某項教改試驗的意見,用系統(tǒng)抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40

D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,,是等比數(shù)列,,,.

1)求數(shù)列的通項公式;

2)若,求當(dāng)是偶數(shù)時,數(shù)列的前項和;

3)若,是否存在實數(shù)使得不等式對任意的,恒成立?若存在,求出所有滿足條件的實數(shù),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司結(jié)合公司的實際情況針對調(diào)休安排展開問卷調(diào)查,提出了,三種放假方案,調(diào)查結(jié)果如下:

支持方案

支持方案

支持方案

35歲以下

20

40

80

35歲以上(含35歲)

10

10

40

1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從支持方案的人中抽取了6人,求的值;

2)在支持方案的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某單位的食堂中,食堂每天以元/斤的價格購進(jìn)米粉,然后以4.4元/碗的價格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂某天購進(jìn)了80斤米粉,以(單位:斤)(其中)表示米粉的需求量, (單位:元)表示利潤.

(Ⅰ)計算當(dāng)天米粉需求量的平均數(shù),并直接寫出需求量的眾數(shù)和中位數(shù);

(Ⅱ) 表示為的函數(shù);

Ⅲ)根據(jù)直方圖估計該天食堂利潤不少于760元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,是過定點且傾斜角為的直線,在極坐標(biāo)系(以坐標(biāo)原點為極點,以軸非負(fù)半軸為極軸,取相同單位長度)中,曲線的極坐標(biāo)方程為 .

(1)寫出直線的參數(shù)方程,并將曲線的方程為化直角坐標(biāo)方程;

(2)若曲線與直線相交于不同的兩點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著快遞行業(yè)的崛起,中國快遞業(yè)務(wù)量驚人,2018年中國快遞量世界第一,已連續(xù)五年突破五百億件,完全超越美日歐的總和,穩(wěn)居世界第一名.某快遞公司收取費的標(biāo)準(zhǔn)是:不超過1kg的包裹收費8元;超過1kg的包裹,在8元的基礎(chǔ)上,每超過1kg(不足1kg,按1kg計算)需再收4元.

該公司將最近承攬(接收并發(fā)送)的100件包裹的質(zhì)量及件數(shù)統(tǒng)計如下(表1):

表1:

公司對近50天每天承攬包裹的件數(shù)(在表2中的“件數(shù)范圍”內(nèi)取的一個近似數(shù)據(jù))、件數(shù)范圍及天數(shù),列表如下(表2):

表2:

(1)將頻率視為概率,計算該公司未來3天內(nèi)恰有1天攬件數(shù)在100~299之間的概率;

(2)①根據(jù)表1中最近100件包裹的質(zhì)量統(tǒng)計,估計該公司對承攬的每件包裹收取快遞費的平均值:

②根據(jù)以上統(tǒng)計數(shù)據(jù),公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,其余用作其他費用.目前,前臺有工作人員5人,每人每天攬件數(shù)不超過100件,日工資80元.公司正在考慮是否將前臺人員裁減1人,試計算裁員前、后公司每天攬件數(shù)的數(shù)學(xué)期望;若你是公司決策者,根據(jù)公司每天所獲利潤的期望值,決定是否裁減前臺工作人員1人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]已知函數(shù)f(x)=log ( |x + 1| + |x- 1|- a ).

(I)當(dāng)a=3時,求函數(shù)f(x)的定義域;

()若不等式fx的解集為R,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點和短軸的兩個頂點構(gòu)成的四邊形是一個正方形,且其周長為.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)過點的直線與橢圓相交于兩點,關(guān)于原點的對稱點為,若點總在以線段為直徑的圓內(nèi),的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案