【題目】某農(nóng)科院為試驗冬季晝夜溫差對反季節(jié)大豆新品種發(fā)芽的影響,對溫差與發(fā)芽率之間的關(guān)系進行統(tǒng)計分析研究,記錄了6天晝夜溫差與實驗室中種子發(fā)芽數(shù)的數(shù)據(jù)如下:
日期 | 1月1日 | 1月2日 | 1月3日 | 1月4日 | 1月5日 | 1月6日 |
溫差(攝氏度) | 10 | 11 | 12 | 13 | 8 | 9 |
發(fā)芽數(shù)(粒) | 26 | 27 | 30 | 32 | 21 | 24 |
他們確定的方案是先從這6組數(shù)據(jù)中選出2組,用剩下的4組數(shù)據(jù)求回歸方程,再用選取的兩組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差不超過1粒,則認為得到的線性回歸方程是可靠的.請根據(jù)1月2,3,4,5日的數(shù)據(jù)求出關(guān)于的線性回歸方程(保留兩位小數(shù)),并檢驗此方程是否可靠.
參考公式:,
【答案】(1)(2).可靠
【解析】
(1)先求得從6組數(shù)據(jù)中任選2組數(shù)據(jù)的基本事件個數(shù),再得相鄰2天數(shù)據(jù)事件個數(shù),即可得選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)根據(jù)所給數(shù)據(jù),分別求得,代入公式可得,進而得回歸直線方程;分別再代入,檢驗即可判斷.
(1)從6組數(shù)據(jù)中任選2組數(shù)據(jù),共有15個基本事件,,,,,.
記這2組數(shù)據(jù)恰好是相鄰兩天數(shù)據(jù)為事件A,
則A中有,共5個基本事件,
故.
(2),
,
所以
.
所求的回歸方程為.
當(dāng)時,,,
當(dāng)時,,.
故此線性回歸方程是可靠的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,判斷并說明函數(shù)的零點個數(shù).若函數(shù)所有零點均在區(qū)間內(nèi),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是等腰梯形,,,,三角形是等邊三角形,平面平面,、分別為、的中點.
(1)求證:平面平面;
(2)若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“業(yè)務(wù)技能測試”是量化考核員工績效等級的一項重要參考依據(jù).某公司為量化考核員工績效等級設(shè)計了A,B兩套測試方案,現(xiàn)各抽取名員工參加A,B兩套測試方案的預(yù)測試,統(tǒng)計成績(滿分分),得到如下頻率分布表.
成績頻率 | |||||||
方案A | |||||||
方案B |
(1)從預(yù)測試成績在的員工中隨機抽取人,記參加方案A的人數(shù)為,求的最有可能的取值;
(2)由于方案A的預(yù)測試成績更接近正態(tài)分布,該公司選擇方案A進行業(yè)務(wù)技能測試.測試后,公司統(tǒng)計了若干部門測試的平均成績與績效等級優(yōu)秀率,如下表所示:
根據(jù)數(shù)據(jù)繪制散點圖,初步判斷,選用作為回歸方程.令,經(jīng)計算得,,.
(ⅰ)若某部門測試的平均成績?yōu)?/span>,則其績效等級優(yōu)秀率的預(yù)報值為多少?
(ⅱ)根據(jù)統(tǒng)計分析,大致認為各部門測試平均成績,其中近似為樣本平均數(shù),近似為樣本方差,求某個部門績效等級優(yōu)秀率不低于的概率為多少?
參考公式與數(shù)據(jù):(1),,.
(2)線性回歸方程中,,.
(3)若隨機變量,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),為自然對數(shù)的底數(shù))的圖象在點處的切線與該函數(shù)的圖象恰好有三個公共點,則實數(shù)的取值范圍是( )
A.B.或
C.D.或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足“存在正數(shù),使得對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在,使成立”,則稱該函數(shù)為“依附函數(shù)”.
(1)分別判斷函數(shù)①,②是否為“依附函數(shù)”,并說明理由;
(2)若函數(shù)的值域為,求證:“是‘依附函數(shù)’”的充要條件是“”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱中,四邊形為梯形, ,且.過三點的平面記為, 與的交點為.
(I)證明: 為的中點;
(II)求此四棱柱被平面所分成上下兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)急需住院人數(shù)超過醫(yī)院所能收治的病人數(shù)量時就會發(fā)生“醫(yī)療資源擠兌”現(xiàn)象,在新冠肺炎爆發(fā)期間,境外某市每日下班后統(tǒng)計住院人數(shù),從中發(fā)現(xiàn):該市每日因新冠肺炎住院人數(shù)均比前一天下班后統(tǒng)計的住院人數(shù)增加約25%,但每日大約有200名新冠肺炎患者治愈出院,已知該市某天下班后有1000名新冠肺炎患者住院治療,該市的醫(yī)院共可收治4000名新冠肺炎患者,若繼續(xù)按照這樣的規(guī)律發(fā)展,該市因新冠肺炎疫情發(fā)生“醫(yī)療資源擠兌”現(xiàn)象,只需要約( )
參考數(shù)據(jù):.
A.7天B.10天C.13天D.16天
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com